1دانشیار گروه مدیریت صنعتی- دانشکده اقتصاد ومدیریت و حسابداری دانشگاه یزد
2استادیار گروه مدیریت صنعتی دانشکده اقتصاد ، مدیریت و حسابداری دانشگاه یزد
3دانشجوی کارشناسی ارشد مدیریت گردشگری دانشگاه علامه طباطبائیی
چکیده
امروزه مدیریت زنجیر هى تأمین ب هدلیل جهان یشدن بازارهای کس بوکار، اهمیت بیشتری پیدا کرده است. با افزایش پیچیدگی، سطح نبود اطمینان و ریسک موجود در زنجیره نیز افزایش م ییابد. از ای نرو مدیریت ریسک زنجیر هى تأمین یکی از موضوعاتی است که مورد توجه سازما نها قرار گرفته است. یکی از خطرهای موجود در زنجیر هى تأمین، ریس کهای وارده از ناحی هى تأمی نکنندگان است. تحقیق حاضر با ب هکارگیری شبک ههای عصبی مصنوعی ب هعنوان ابزارى قدرتمند در پردازش اطلاعات غیرخطی، مدلی مناسب براى پی شبینى ریسک وارده از سوى تأمی نکنندگان در شرکت فولاد آلیاژى ایران ارائه م ىدهد. در این مدل با استفاده از تکنیک دلفى فازى هفت عامل ب هعنوان عوامل ورودی مدل شبک هى عصبى انتخاب VIKOR و AHP شدند. براى محاسب هى میزان ریسک وارده از سوى هر تأمی نکننده، از تلفیق تکنیک استفاده شده و با ب هکارگیرى مدل پرسپترون چندلایه، میزان ریسک وارده از سوى هر تأمی نکننده پی شبینی شده است. در پایان با استفاده از تحلیل حساسیت تأثیر هرکدام از متغیرهای ورودی بر خروجی ارزیابی و پیشنهاداتى براى کاهش ریسک ارائه شده است.
Developing an integrated model for evaluation Risk in Supply Chain using ANN (Case Study: Iran Alloy Steel Company)
نویسندگان [English]
Seyed Habib Allah Mirghafoori1؛ Ali Morovati Sharifabadi2؛ Faezeh Asadian Ardakani3
1Associate Professor of industrial management, Yazd University
2Assistant Professor of industrial management, Yazd University
3Ph.D. Student of Tourism Management, Allameh Tabataba’i University
چکیده [English]
In the last few years, supply chain management becomes more important, because of the globalization of business. By increasing complexity, level of uncertainty and risk in the chain goes up. Hence supply chain risk management has become a major issue in the organization. One of the risks existing in the supply chain is risk of suppliers. This research provides model for predicting supplier risk in Iran Alloy Steel Company that is then analyzed using Artificial Neural Networks which are capable to consider non-liner interrelations among criteria. In the model using fuzzy Delphi, seven criteria have been identified. Then by using AHP-VIKOR the risk of supplier calculated and the risk of suppliers were predicted. Finally, we use sensitive analysis for identification effect of every input on output
[1]. Blackhurst, J.V., Scheibe, K.P., & Johnson, D.J., “Supplier risk assessment and monitoring for the automotive industry”, International Journal of Physical Distribution & Logistics Management, Vol. 38, No. 2, 2008, pp. 143-165. [2]. Blos, M.F., Quaddus, M., Wee, H.M., & Watanabe, K., “Supply chain risk management (SCRM): a case study on the automotive and electronic industries in Brazil”, Supply Chain Management: an International Journal, Vol. 14, No. 4, 2009, pp. 247–252. [3]. Bogataja, D., & Bogataj, M., “Measuring the supply chain risk and vulnerability in frequency space”, International journal Production Economics, Vol. 108, 2007, pp. 291-301. [4]. Chan, F.T.S., & Kumar, N., “Global supplier development considering risk factors using fuzzy extended AHP-based approach”, The International Journal of Management Science, Vol. 35, No. 4, 2011, pp. 417-431. [5]. Chang, P-T., “The fuzzy Delphi method via fuzzy statistics and membership function fitting and application to the human resources”, Fuzzy Sets and Systems, 112, 1998. [6]. Chen, L.Y., & Wang, T.C., “Optimizing partners’ choice in IS/IT out sourcing projects: The strategic decision of fuzzy VIKOR”, International Journal Production Economics, Vol. 120, 2009, pp. 233–242. [7]. Cheng, C-H., & Lin, Y., “Evaluating the best main battle tank using fuzzy decision theory with linguistic criteria evaluation”, European. Journal of Operational Research, Vol. 142, No. 1, 2002, pp. 174-186 [8]. Cheng, T.C.E., Yip, F.K., & Yeung, A.C.L., “Supply risk management via guanxi in the Chinese business context: The buyer’sperspective”, International Journal of Production Economics, Vol. 139, No. 1, 2012, pp. 3-13. [9]. Chopra, S., & Sodhi, M.S., “Managing risk to avoid supply chain breakdown”, MIT Sloan Management Review, Vol. 46, No. 1, 2004, pp. 53-61. [10]. Cucchiella, F., & Gastaldi, M., “Risk management in supply chain: a real option approach”, Journal of Manufacturing Technology Management, Vol. 17, No. 6, 2006, pp. 700- 720. [11]. Duru, O., Bulut, E., & Yoshida, S., “A fuzzy extended DELPHI method for adjustment of statistical time series prediction: An empirical study on dry bulk freight market case”, Expert Systems with Applications, Vol. 39, 2012, pp. 840–848 [12]. Faisal, M.N., Banwet, D.K., & Shankar, R., “Supply chain risk mitigation: modeling the enablers”, Business Process Management Journal, Vol. 12, No. 4, 2006, pp. 535-552. [13]. Hittle, B., & Leonard, K.M., “Decision making in advance of a supply chain crisis”, Management Decision, Vol. 49, No. 7, 2011, pp. 1182-1193. [14]. Hsu, Y-L., Lee, C-H., & Kreng, V.B., “The application of Fuzzy Delphi Method and Fuzzy AHP in lubricant regenerative technology selection”, Expert Systems with Applications, Vol. 37, 2010, pp. 419–425 [15]. Juttner, U., Peck, H., & Christopher, M., “Supply Chain Risk Management: Outlining an Agend A for Future Research”, International Journal of Logistics: Research & Applications, Vol. 6, No. 4, 2003, pp. 197-210. [16]. Kara, S., Kayis, B., & Gomez, E., “Managing Supply Chain Risks in Multi-site, Multipartner Engineering Projects”, Communications of the IBIMA, Vol. 5, 2008, pp. 100-112. [17]. Kaya, T., & Kahraman, C., “Fuzzy multiple criteria forestry decision making based on an integrated VIKOR and AHP approach”, Expert Systems with Applications, Vol. 38, 2011, pp. 7326–7333. 20 مطالعات مدیریت صنعتی، سال یازدهم، شماره 30 ، پاییز 1392 [18]. Khan, O., Christopher, M., & Burnes, B., “The impact of product design on supply chain risk: a case study”, International Journal of Physical Distribution & Logistics Management, Vol. 38, No. 5, 2008, pp. 412-432. [19]. Li, S., Ragu-Nathan, B., Ragu-Nathan, T.S., & Rao, S.S., “The impact of supply chain management practices on competitive advantage and organizational performance”, Omega, Vol. 34, 2006, pp. 107– 124 [20]. Manuj, I., & Mentzer, J., “Global supply chain risk management strategies”, International Journal of Physical Distribution and Logistics Management, Vol. 38, No. 3, 2008, pp. 192–223. [21]. Micheli, G.J.L., Cagno, E., & Giulio, A.D., “Reducing the total cost of supply through risk-efficiency-based supplier selection in the EPC industry”, Journal of Purchasing and Supply Management, Vol. 15, 2009, pp. 166-177 [22]. Micheli, G.J.L., Cagno, E., & Zorzini, M., “Supply risk management vs supplier selection to manage the supply risk in the EPC supply chain”, Management Research News, Vol. 31, No. 11, 2008, pp. 846-866. [23]. Moeinzadeh, P., & Hajfathaliha, A., “A Combined Fuzzy Decision Making Approach to Supply Chain Risk Assessment”, International Journal of Human and Social Sciences, Vol. 5, No. 13, 2010, pp. 859-875. [24]. Norrman, A., & Jansson, U., “Ericsson’s proactive supply chain risk management approach after a serious sub-supplier accident”, International Journal of Physical Distribution and Logistics Management, Vol. 34, No. 5, 2004, pp. 434–456 [25]. Opricovic, S., & Tzeng, G.H., “Extended VIKOR method in comparison with outranking methods”, European journal of operational research, Vol. 178, No. 2, 2007, pp. 514- 529. [26]. Pujawan, I.N., & Geraldin, L.H., “House of risk: a model for proactive supply chain risk management”, Business Process Management Journal, Vol. 15, No. 6, 2009, pp. 953-967. [27]. Qinghua, W., Xiaozhong, X., Wenhao, T., Liang, H., “An Early-Warning Model for Supply Chain Risk Based On the Balanced Scoring Card and BP Neural Networks”, International Conference on Automation and Logistics Qingdao, 2008. [28]. Sanchez-Rodrigues, V., Potter, A., & Naim, M.M., “Evaluating the causes of uncertainty in logistics operations”, The International Journal of Logistics Management, Vol. 21, No. 1, 2010, pp. 45-64 [29]. Schoenherr, T., Tummalaa, V.M.R., & P. Harrison, T., “Assessing supply chain risks with the analytic hierarchy process: Providing decision support for the offshoring decision by a US manufacturing company”, Journal of Purchasing & Supply Management, Vol. 14, 2008, pp. 100–111. [30]. Tang, C.S., “Perspectives in supply chain risk management: a review”, International Journal Production Economics, Vol. 103, 2006, pp. 451–488. [31]. Tang, O., & Nurmaya Musa, S., “Identifying risk issues and research advancements in supply chain risk management”, International Journal Production Economics, Vol. 133, 2011, pp. 25–34. [32]. Thun, J.H., & Hoenig, D., “An empirical analysis of supply chain risk management in the German automotive industry”, International Journal Production Economics, Vol. 131, 2011, pp. 242–249. [33]. Trkman, P., & McCormack, K., “Supply chain risk in turbulent environments-A conceptual model for managing supply chain network risk”, International Journal Production Economics, Vol. 119, 2009, pp. 247–258. [34]. Tuncel, G., & Alpan, G., “Risk assessment and management for supply chain networks: طراحی مدلی براى ارزیابى ریسک در زنجیر هى تأمین با رویکرد شبک هى عصبى مصنوعى 21 A case study”, Computers in Industry, Vol. 61, 2010, pp. 250–259. [35]. Vilko, J., “Approaches to supply chain risk management: identification, analysis and control”, Lappeenranta University of Technology Digipaino, 2012. [36]. Vilko, J., Hallikas, J.M., “Risk assessment in multi modal supply chains”, International Journal of Production Economics, Vol. 140, 2012, pp. 586-595. [37]. Wagner, S. M., & Neshat, N., “Assessing the vulnerability of supply chains using graph theory”, International Journal Production Economics, Vol. 126, 2010, pp. 121–129. [38]. Wang, Y., & Huang, L., “Risk Assessment of Supply chain Based on BP Neural Network”, Second International Symposium on Knowledge Acquisition and Modeling, 2009. [39]. Wu, T., Blackhurst, J., & Chidambaram, V., “A model for inbound supply risk analysis”, Computers in Industry, Vol. 57, 2006, pp. 350–365. [40]. Xia, D., & Chen, B., “A comprehensive decision-making model for risk management of supply chain”, Expert Systems with Applications, Vol. 38, 2011, pp. 4957–4966. [41]. Yao, Y.Y., Zhao, Y., & Maguire, R.B., “Explanationoriented association mining using a combination of unsupervised and supervised learning algorithms”, Proceedings of the Sixteenth Canadian Conference on Artificial Intelligence, 2008. [42]. Yi, C.Y., Ngai, E.W.T., & Moon, K.L., “Supply chain flexibility in an uncertain environment: exploratory findings from five case studies”, Supply Chain Management: an International Journal, Vol. 16, No. 4, 2011, pp. 271–283. [43]. Zsidisin, G.A., & Ellram, L.M., “An agency theory investigation of supply risk management”, Journal of Supply Chain Management, Vol. 39, No. 3, 2003, pp. 15–29