تجزیه و تحلیل مبتنی بر ریسک عملکرد سیستم تولید

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی صنایع، واحد پرند، دانشگاه آزاد اسلامی، پرند، ایران

2 کارشناسی ارشد گروه مهندسی صنایع، واحد پرند، دانشگاه آزاد اسلامی،پرند، ایران

3 کارشناسی ارشد گروه مهندسی صنایع، واحد پرند، دانشگاه آزاد اسلامی، پرند، ایران

چکیده

سیستم های تولید همواره با ریسک های مختلفی از جمله ریسک توقف و از کار افتادگی روبرو هستند. تجزیه و تحلیل
ریسک عملکرد سیستم تولید، در حالی که داده های واقعی و مناسب در دسترس نیست باعث بروزخطا در پیش بینی
پارامترها و سبب تصمیمگیری غلط خواهد شد. شرایط عدم قطعیت حالتی است که داده های مناسب برای تصمیمگیری
وجود ندارد و در حالتی خاص از عدم قطعیت تصمیمگیرنده با فقدان اطلاعات مواجه است. ریسک حالتی از عدم قطعیت
است که اطلاعات از گذشته سیستم به طور ناقص در دسترس است. ریسک موجود در سیستم های تولیدی با عدم تحقق
قابلیت اطمینان دستگاهها ارتباط مستقیم دارد، در این پژوهش نخست سوابق و رابطه بین ریسک و قابلیت اطمینان مورد
بررسی قرار گرفته سپس با بهره گیری از تئوری دمپستر شافر مدلی برای حداکثر سازی قابلیت اطمینان با توجه به
ریسک موجود ارائه شده است. از آنجایی که محاسبه دقیق قابلیت اطمینان برای سیستم های و فرایندهای پیچیده وقتی که
داده های درستی از شکست در اختیار نیست به شدت مشکل و پیچیده میشود در روش جدیدی که ارائه شده، به جای
استفاده از روش های کاملا کیفی، ازتئوری دمپسترو شافر استفاده شده که در آن از همه داده های در دسترس برای
تصمیمگیری استفاده شده است. استفاده از این روش سبب به دست آمدن محدوده های ریسک برای تجهیزات و ماشین
آلات میگردد.این محدوده ها با توجه به رابطه ای که بین ریسک و قابلیت اطمینان دستگاه وجود دارد در یک ماتریس
تحلیل ریسک ترسیم و میزان تغییرات برای رسیدن به ریسک پایین تر مشخص شده است، تمامی روش ارائه شده با بهره
گیری از اطلاعات یک شرکت تولیدی مورد بررسی قرار گرفته است، تمرکز کارهایی که تاکنون در خصوص ارزیابی
قابلیت اطمینان انجام شده است روی استفاده از تئوری احتمال بوده که در آن با تعیین نوع توزیع های شکست اجزا به پیش
بینی زمان شکست پرداخته شده است در حالی که تحقیق حاضر ارائه دهنده تغییر نگرشی برای کاربردی کردن استفاده
همزمان از تئوری امکان و تئوری احتمال است.

کلیدواژه‌ها


عنوان مقاله [English]

Risk-Based Analysis for the Production System Performance

نویسندگان [English]

  • Mehran Khalaj 1
  • Amir Hossine Khalaj 2
  • Jalal Talebi 3
چکیده [English]

Manufacturing systems are always facing different kinds of risk such as failure and interruption risk. Performance risk analysis of manufacturing systems cause errors happening in the prediction of parameters and will also result in wrong decisions where the real and appropriate data is not available. In uncertainty condition there is no appropriate data for decision making and in the specific mode of uncertainty the decision maker faces with a lack of information. Risk is a state of uncertainty that the available information from background of system is incomplete. Risks in manufacturing systems are directly related with failure to achieve the reliability of machines. So in this paper the records and the relationship between risk and reliability have been studied, then a model is proposed using Dumpster-Shafer theory to maximize the reliability according to the existing risk. Since the exact calculation of reliability for complex systems and processes is extremely difficult and complicated when the correct data of failure is not available, newly proposed model uses Dumpster-Shafer theory that enjoys all the available data for decision making instead of using the purely qualitative methods. Using this method results in obtain the risk ranges for equipment and machinery. These ranges are drawn in a risk analysis matrix according to the relationship between risk and reliability of machinery and the changes have been determined in order to meet the lower risk. All the proposed methods are examined using the data of a manufacturing company, the concentration of evaluating the reliability is on using the Probability theory in which the failure time is predicted by determining type of component failure distribution while the research provides change in attitude for applying the simultaneous use of possibility and probability theory

کلیدواژه‌ها [English]

  • Dempster-Shafer Theory
  • epistemic uncertainty
  • risk analysis, Reliability, Possibility theory
B.J. Buchanan, E.H. Shortliffe.(1975) A model of inexact reasoning in medicine, Mathematical Biosciences ;23: 351–379. Bayes, T. (1763). an essay towards solving a problem in the doctrine of chances. philosophical Transactions of the Royal Society of London; 53: 370- 418. Berger, James O. Statistical Decision Theory and Bayesian Analysis. New York: Springer 1985; 109–130. Caselton W.F, Luo W. (1992).Decision making with imprecise probabilities, Dempster-Shafer theory and applications.Water Resources Research; 28 (12):3071-3083. Danzer, P. Supancic, J. Pascual, T. Lube. (2007).Engineering Fracture Mechanics; 74: 2919–2932. Dempster AP. (1967). Upper and Lower Probabilities Induced by a Multi-valued Mapping. Annals Mathematical Statistics; 38: 325-39. Dubois D, Prade H. (1998) Possibility theory is not fully compositional A comment on a short note by H.J. Greenberg. Fuzzy Sets and Systems; 131-134. Ebeling, C.E., (1997).an Introduction to Reliability and Maintainability Engineering, McGraw-Hill. Fedrizzi M, Kacprzyk.J,(1980). on measuring consensus in the setting of fuzzy preference relations making with fuzzy sets. IEEE Transactions on Systems, Man, and Cybernetics; 10: 716–723. Giles R. Foundations for a theory of possibility, fuzzy information and decision processes. Amsterdam: North-Holland 1982.

Hecht H., (2004). Systems Reliability and Failure Prevention, Artech house. Henley, E.J., Kumamoto, H.,(1981). Reliability Engineering and Risk Assessment. Prentice-Hall, Englewood Cliffs, NJ . Joslyn CA.(1994). Possibilistic processes for complex systems modeling. PhD Dissertation. State University of New York at Binghamton. Klir GJ.(1989). Is there more to uncertainty than some probability theorists might have us believe? International Journal of General Systems ;15:347–78. Kuo W. and Prasad R., An annotated overview of system-reliability optimization, IEEE Transactions on Reliability 2000; 49 (2):176–187. Kyburg H.E. (1998).Interval-valued probabilities. The Imprecise Probabilities Project . Loganathan Krishnasamy, Faisal Khan, Mahmoud Haddara,(2005) Development of a risk-based maintenance (RBM) strategy for a power-generating plant, journal of loss prevention in the process industries;18(2):69-81. N.S. Lee, Y.L. Grize, K. Dehnald. (1987) Quantitative models for reasoning under uncertainty in knowledge-based expert systems, International Journal of Intelligent Systems; 2:15–38. Oberkampf W.L, DeLand S.M, Rutherford B.M, Diegert K.V, Alvin K.F, (2000).Estimation of total uncertainty in modeling and simulation. Sandia report SAND2000-0824, Albuquerque, NM. Ravi V., Reddy P.J. and Hans-Jürgen Zimmermann, (2000). Fuzzy global optimization of complex system reliability, IEEE Transactions on Fuzzy Systems ;8 (3): 241–248.

Shafer G. (1976).A mathematical theory of evidence. Princeton: Princeton University Press. Smets P. (2000).Belief functions and the transferable belief model. The Imprecise Probabilities Project 2000. Tillman F.A., Hwang F.A. , Kuo W.,(1985). Optimization of Systems Reliability, Marcel Dekker. Todinov M.T., (2003).Modeling consequences from failure and material properties by distribution mixtures, Nuclear Engineering and Design ; 224:233–244. Todinov M.T.,(2004).Reliability analysis and setting reliability requirements based on the cost of failure, International Journal of Reliability, Quality and Safety Engineering, ;11(3): 1–27. Walley P,(1987).Belief-function representations of statistical evidence. Ann Stat 10 : 741-61. Walley P.(1991). Statistical reasoning with imprecise probabilities. New York: Chapman & Hall. Wattanapongsakorn N., Levitan S.P., (2004). Reliability optimization models for embedded systems with multiple applications, IEEE Transactions on Reliability; 53(3): 406–416.
Winkler RL.(1972). Introduction to Bayesian inference and decision. New York: Holt (Rienhart & Winston).
Xu Z., Kuo W. , Lin H.H.,(1990).Optimization limits in improving system reliability, IEEE Transactions on Reliability;39(1): 51–60