نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه شاهد، تهران، ایران

2 دانشیار گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه شاهد، تهران، ایران

3 دانشیار، گروه مهندسی صنایع، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران

چکیده

روش مسیر بحرانی یکی از پرکاربردترین روش‏ها در برنامه‏ریزی و کنترل پروژه است. در این روش زمان به‏عنوان معیار تعیین کننده مسیر بحرانی در نظر گرفته می‏شود؛ اما در نظر گرفتن معیارهای دیگری علاوه بر زمان، ضروری به نظر می‏رسد. به همین منظور در این مقاله، علاوه‏بر معیار زمان، معیارهای تاثیرگذاری همانند هزینه، ریسک، کیفیت و ایمنی در نظر گرفته می‏شود. این مساله به صورت یک مساله تصمیم‏گیری چند شاخصه فازی مدل می‏شود و با ارائه یک توسعه جدید از روش مولتی مورا (MULTIMOORA) حل می‎شود. روش مولتی مورا در محیط فازی بازه‏ای نوع-2 توسعه داده می‏شود. از مجموعه‏های فازی نوع-2 نیز برای در نظر گرفتن عدم قطعیت استفاده می‏گردد. مجموعه‏های فازی نوع-2 انعطاف پذیری و توانایی بیشتری در انعکاس عدم‌قطعیت‏ها نسبت به مجموعه های فازی نوع-1 دارند. در نهایت، روش SWARA در محیط فازی نوع-2 بازه‏ای جهت وزن‏دهی به معیارهای تاثیرگذار زمان، هزینه، کیفیت، ریسک و ایمنی توسعه داده ‎می‎شود. در انتها یک مثال کاربردی برای نشان دادن محاسبات و همچنین توانایی رویکرد پیشنهادی حل می‏شود. براساس مثال ارائه شده، به وضوح دیده می‏شود که طولانی‏ترین مسیر از نظر معیار زمانی، مسیر بحرانی نیست و معیارهای تاثیرگذار دیگر نیز در تعیین مسیر بحرانی دخیل هستند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Determining critical paths of projects by a new hybrid approach based on developed MULTIMOORA and SWARA methods under consideration of time, cost, quality, risk and safety criteria in an interval type-2 fuzzy environment

نویسندگان [English]

  • Yahya Dorfeshan 1
  • Seyed Meysam Mousavi 2
  • Behnam Vahdani 3

1 MSc, Department of Industrial Engineering Faculty of Engineering, Shahed University, Tehran, Iran

2 Associate Professor, Department of Industrial Engineering, Faculty of Engineering, Shahed University, Tehran, Iran

3 Associate Professor, Department of Industrial Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

چکیده [English]

Critical path method is one of the most widely used approaches in planning and project control. Time is considered a determinative criterion for the critical path. But it seems necessary to regard other criteria in addition to time. Besides time criterion, effective criteria such as quality, cost, risk and safety are considered in this paper. Then, the developed problem is solved as a multi-attribute decision making problem by a new extension of MULTIMOORA method. Moreover, type-2 fuzzy sets are utilized for considering uncertainties. Type-2 fuzzy sets are more flexible and capable than type-1 fuzzy sets in reflecting uncertainties. Eventually, SWARA method is developed for determining the weights of efficient criteria such as time, cost, quality, risk and safety under type-2 fuzzy environment. Finally, an applied example has been solved to illustrate the calculations and the ability of the proposed approach. Based on the example, it is clear that the longest path in terms of time criterion is not a critical path, and other influential criteria are involved in determining the critical path.
 Introduction
Today, in the competitive business environment, project management, planning, scheduling, and project control hold significant importance. One of the widely used and common methods in the field of project planning and control is undoubtedly the Critical Path Method (CPM). In the Critical Path Method, activity durations are predetermined. However, in the real world, many projects and activities are executed for the first time and have considerable uncertainties. Therefore, obtaining an accurate estimate of the time and resources required for activities is challenging. However, considering a single criterion, such as time, will not yield fruitful results, and other influential parameters such as risk should also be taken into account. For example, a path that carries a high level of risk may not be the critical path at present, but it may become critical in the future due to the high risk involved. For this reason, this research explores other influential criteria besides time and considers them in determining the critical path.
Materials and Methods
In this study, the problem under investigation is the determination of the critical path while considering other influential criteria in addition to the time criterion. To achieve this, multiple criteria decision-making methods are used to consider criteria such as time, cost, quality, risk, and safety in determining the critical path. Furthermore, to account for the uncertainties of the real world and incorporate expert opinions, type-2 fuzzy sets are utilized. It should be noted that the MULTIMOORA method is employed for ranking the critical paths, while the SWARA method is used to determine the weights of the influential criteria in determining the critical path. Both methods have been extended and developed in a type-2 fuzzy environment.
Discussion and Results
 Initially, the proposed method is solved considering only the time criterion. As observed, the critical path has changed, indicating the importance of other criteria in determining the critical path. Then, the proposed method is solved considering pairwise combinations of the criteria, where the time criterion is treated as a fixed criterion due to its high importance. In fact, the problem is solved considering time and cost, time and risk, time and quality, and time and risk. By increasing or decreasing each criterion, the critical path changes, demonstrating the significance of all criteria in determining the project's critical path. To determine the critical path, it is necessary to consider all criteria together. These variations in the criteria and the resulting change in the critical path clearly indicate the importance and influence of other criteria in determining the critical path.
Conclusion
In this article, an extension of the MULTIMOORA multi-criteria decision-making method is presented in the reference section. Additionally, Type-2 fuzzy numbers, which offer more flexibility and better representation of uncertainties compared to Type-1 fuzzy numbers, are utilized. The MULTIMOORA multi-criteria decision-making method is developed to incorporate these Type-2 fuzzy numbers. The opinions of three experts are used numerically for the time and cost criteria and linguistically as linguistic variables for the quality, risk, and safety criteria. Ultimately, the weights of the influential criteria of time, cost, risk, quality, and safety are determined using the developed SWARA method under Type-2 fuzzy environment. Finally, the most critical path is determined by considering not only the time criterion but also the influential criteria of cost, quality, risk, and safety. Based on the conducted research, a set of criteria including time, cost, quality, risk, and safety are used in this article, and additional criteria can also be added to this set.

کلیدواژه‌ها [English]

  • extension of MULTIMOORA method
  • interval type-2 fuzzy sets
  • fuzzy critical path
  • SWARA method
فضلی، مسعود، جعفرزاده افشاری، احمد و حاجی آقائی کشتلی، مصطفی. (a2020). شناسایی و رتبه‌بندی ریسک‌های پروژه‌های ساختمانی سبز با استفاده از رویکرد ترکیبی SWARA-COPRAS: (مطالعه موردی: شهرستان آمل). مطالعات مدیریت صنعتی، 18(58)، 139-192.‎
فضلی، مسعود، فلاح، علی و خاکباز، امیر. (b2020). مدیریت ریسک در پروژه‌های ساختمانی با در نظر گرفتن روابط متقابل ریسک پروژه: بیشینه نمودن مطلوبیت. مطالعات مدیریت صنعتی، 18(56)، 337-374.‎
گل پیرا، هیرش، بابایی تیرکلایی، عرفان، تقوی فرد، محمد تقی، ظاهری، فائق. (2021). زمان بندی چند پروژه‌ای بهینه با در نظر گرفتن قابلیت اطمینان و کیفیت در زنجیره تأمین ساخت و ساز: الگوریتم ژنتیک ترکیبی. مطالعات مدیریت صنعتی، 19(61).‎
Alimardani, M., Hashemkhani Zolfani, S., Aghdaie, M. H., & Tamošaitienė, J. (2013). A novel hybrid SWARA and VIKOR methodology for supplier selection in an agile environment. Technological and Economic Development of Economy, 19(3), 533-548.
Amiri, M., & Golozari, F. (2011). Application of fuzzy multi-attribute decision making in determining the critical path by using time, cost, risk, and quality criteria. The International Journal of Advanced Manufacturing Technology, 54(1-4), 393-401.
Aras, A. C., & Kaynak, O. (2014). Interval type-2 fuzzy neural system based control with recursive fuzzy C-means clustering. Int. J. Fuzzy Syst, 16(3), 317-326.
Baležentis, A., Baležentis, T., & Brauers, W. K. (2012). Personnel selection based on computing with words and fuzzy MULTIMOORA. Expert Systems with applications, 39(9), 7961-7967.
Baležentis, T., & Zeng, S. (2013). Group multi-criteria decision making based upon interval-valued fuzzy numbers: an extension of the MULTIMOORA method. Expert Systems with Applications, 40(2), 543-550.
Bezdek, J. C. (2013). Pattern recognition with fuzzy objective function algorithms. Springer Science & Business Media.
Brauers, W. K. M., & Zavadskas, E. K. (2006). The MOORA method and its application to privatization in a transition economy. Control and Cybernetics, 35(2), 445.
Brauers, W. K. M., & Zavadskas, E. K. (2010). Project management by MULTIMOORA as an instrument for transition economies. Technological and Economic Development of Economy, (1), 5-24.
Brauers, W. K., Baležentis, A., & Baležentis, T. (2011). MULTIMOORA for the EU Member States updated with fuzzy number theory. Technological and Economic Development of Economy, 17(2), 259-290.
Cao, J., Ji, X., Li, P., & Liu, H. (2011). Design of adaptive interval type-2 fuzzy control system and its stability analysis. International Journal of Fuzzy Systems, 13(4), 334-343.
Cao, Q., Esangbedo, M. O., Bai, S., & Esangbedo, C. O. (2019). Grey SWARA-FUCOM weighting method for contractor selection MCDM problem: A case study of floating solar panel energy system installation. Energies12(13), 2481.
Celikyilmaz, A., & Turksen, I. B. (2009). Modeling uncertainty with fuzzy logic. Studies in fuzziness and soft computing, 240.
Chanas, S., & Zieliński, P. (2001). Critical path analysis in the network with fuzzy activity times. Fuzzy sets and systems, 122(2), 195-204.
Chen, C. T., & Huang, S. F. (2007). Applying fuzzy method for measuring criticality in project network. Information sciences, 177(12), 2448-2458.
Chen, S. M., & Lee, L. W. (2010). Fuzzy multiple attributes group decision-making based on the interval type-2 TOPSIS method. Expert systems with applications, 37(4), 2790-2798.
Chen, S. P. (2007). Analysis of critical paths in a project network with fuzzy activity times. European Journal of Operational Research, 183(1), 442-459.
Chiao, K. P. (2021). Multi-criteria decision making with interval type 2 fuzzy Bonferroni mean. Expert systems with applications176, 114789.
Deveci, M., Cali, U., Kucuksari, S., & Erdogan, N. (2020). Interval type-2 fuzzy sets based multi-criteria decision-making model for offshore wind farm development in Ireland. Energy198, 117317.
Dorfeshan, Y., Mousavi, S. M., Vahdani, B., & Siadat, A. (2018). Determining project characteristics and critical path by a new approach based on modified NWRT method and risk assessment under an interval type-2 fuzzy environment.
Fazli, M., Fallah, M., Khakbaz. (2020b). Risk management in construction projects by considering project risk interrelationships: Maximizing utility. Industrial Management Studies, 18(56), 337-374[In
Persian]
Fazli, M., Jafarzadeh Afshari, A., Haji Aghaei, k. (2020). Identification and ranking of green construction project risks by using a hybrid COPRAS-SWARA (Case study: Amol city). Industrial Management Studies, 18(58), 139-192[In Persian]
Gitinavard, H., Mousavi, S. M., & Vahdani, B. (2016a). A new multi-criteria weighting and ranking model for group decision-making analysis based on interval-valued hesitant fuzzy sets to selection problems. Neural Computing and Applications27(6), 1593-1605.
Gitinavard, H., Mousavi, S. M., Vahdani, B., & Siadat, A. (2016b). A new distance-based decision model in interval-valued hesitant fuzzy setting for industrial selection problems. Scientia Iranica23(4), 1928-1940.
Gol Pera, H., Babaei Tirkalaei, E., Taghavi Fard, Zaheri, Faegh. (2021). Optimal Multi-Project Scheduling Considering Reliability and Quality in the Construction Supply Chain: A Combined Genetic Algorithm. Industrial Management Studies, 19(61). [In Persian]
Hoseini, S. A., Hashemkhani Zolfani, S., Skačkauskas, P., Fallahpour, A., & Saberi, S. (2021). A combined interval type-2 fuzzy MCDM framework for the resilient supplier selection problem. Mathematics10(1), 44.
Karabasevic, D., Zavadskas, E. K., Turskis, Z., & Stanujkic, D. (2016). The framework for the selection of personnel based on the SWARA and ARAS methods under uncertainties. Informatica, 27(1), 49-65.
Karande, P., & Chakraborty, S. (2012). A Fuzzy-MOORA approach for ERP system selection. Decision Science Letters, 1(1), 11-21.
Karnik, N. N., & Mendel, J. M. (2001). Centroid of a type-2 fuzzy set. Information Sciences, 132(1), 195-220.
Kaur, P., & Kumar, A. (2014). Linear programming approach for solving fuzzy critical path problems with fuzzy parameters. Applied Soft Computing, 21, 309-319.
Kelley Jr, J. E. (1961). Critical-path planning and scheduling: Mathematical basis. Operations research, 9(3), 296-320.
Keršulienė, V., & Turskis, Z. (2011). Integrated fuzzy multiple criteria decision making model for architect selection. Technological and Economic Development of Economy, 17(4), 645-666.
Lee, L. W., & Chen, S. M. (2008, July). Fuzzy multiple attributes group decision-making based on the extension of TOPSIS method and interval type-2 fuzzy sets. In 2008 International Conference on Machine Learning and Cybernetics (Vol. 6, pp. 3260-3265). IEEE.
Liang, S. K., Yang, K. L., & Chu, P. (2004). Analysis of fuzzy multiobjective programming to CPM in project management. Journal of Statistics and Management Systems, 7(3), 597-609.
Liu, D., & Hu, C. (2021). A dynamic critical path method for project scheduling based on a generalised fuzzy similarity. Journal of the Operational Research Society72(2), 458-470.
Liu, H. C., Fan, X. J., Li, P., & Chen, Y. Z. (2014). Evaluating the risk of failure modes with extended MULTIMOORA method under fuzzy environment. Engineering Applications of Artificial Intelligence, 34, 168-177.
Liu, P., Gao, H., & Fujita, H. (2021). The new extension of the MULTIMOORA method for sustainable supplier selection with intuitionistic linguistic rough numbers. Applied Soft Computing99, 106893.
Madhuri, K. U., Siresha, S., & Shankar, N. R. (2012). A new approach for solving fuzzy critical path problem using LL fuzzy numbers. Applied Mathematical Sciences, 6(27), 1303-1324.
Mehlawat, M. K., & Gupta, P. (2016). A new fuzzy group multi-criteria decision making method with an application to the critical path selection. The International Journal of Advanced Manufacturing Technology, 83(5-8), 1281-1296.
Mendel, J. M., John, R. I., & Liu, F. (2006). Interval type-2 fuzzy logic systems made simple. IEEE Transactions on Fuzzy Systems, 14(6), 808-821.
Mohagheghi, V., Mousavi, S. M., & Vahdani, B. (2015). A new optimization model for project portfolio selection under interval-valued fuzzy environment. Arabian Journal for Science and Engineering40(11), 3351-3361.
Mohagheghi, V., Mousavi, S. M., & Vahdani, B. (2016). A new multi-objective optimization approach for sustainable project portfolio selection: a realworld application under interval-valued fuzzy environment. Iranian Journal of Fuzzy Systems13(6), 41-68.
Mousavi, S. M., & Vahdani, B. (2016). Cross-docking location selection in distribution systems: a new intuitionistic fuzzy hierarchical decision model. International Journal of computational intelligence Systems9(1), 91-109.
Mousavi, S. M., Vahdani, B., & Behzadi, S. S. (2016). Designing a model of intuitionistic fuzzy VIKOR in multi-attribute group decision-making problems. Iranian Journal of Fuzzy Systems13(1), 45-65.
Negoita, C., Zadeh, L., & Zimmermann, H. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems, 1(3-28), 61-72.
Pour, N. S., Zeynali, S., & Kheradmand, M. (2012). Calculating the fuzzy project network critical path. International Journal of Engineering & Technology, 1(2), 58-66.
Rani, P., & Mishra, A. R. (2021). Fermatean fuzzy Einstein aggregation operators-based MULTIMOORA method for electric vehicle charging station selection. Expert Systems with Applications182, 115267.
Samayan, N., & Sengottaiyan, M. (2017). Fuzzy critical path method based on ranking methods using hexagonal fuzzy numbers for decision making. Journal of intelligent & fuzzy systems32(1), 157-164.
San Cristobal, J. R. (2012). Critical path definition using multicriteria decision making: PROMETHEE method. Journal of Management in Engineering, 29(2), 158-163.
Stanujkic, D. (2016). An extension of the ratio system approach of MOORA method for group decision-making based on interval-valued triangular fuzzy numbers. Technological and Economic Development of Economy, 22(1), 122-141.
Stanujkic, D., Karabasevic, D., & Zavadskas, E. K. (2015). A framework for the selection of a packaging design based on the SWARA method. Inzinerine Ekonomika-Engineering Economics, 26(2), 181-187.
Stanujkic, D., Magdalinovic, N., Jovanovic, R., & Stojanovic, S. (2012). An objective multi-criteria approach to optimization using MOORA method and interval grey numbers. Technological and Economic Development of Economy, 18(2), 331-363.
Ulutaş, A., Karakuş, C. B., & Topal, A. (2020). Location selection for logistics center with fuzzy SWARA and CoCoSo methods. Journal of Intelligent & Fuzzy Systems38(4), 4693-4709.
Vahdani, B., Mousavi, S. M., Tavakkoli-Moghaddam, R., Ghodratnama, A., & Mohammadi, M. (2014a). Robot selection by a multiple criteria complex proportional assessment method under an interval-valued fuzzy environment. The International Journal of Advanced Manufacturing Technology73(5), 687-697.
Vahdani, B., Salimi, M., & Mousavi, S. M. (2015). A compromise decision-making model based on VIKOR for multi-objective large-scale nonlinear programming problems with a block angular structure under uncertainty. Scientia Iranica22(6), 22571-2584.
Vahdani, B., Salimi, M., and S.M. Mousavi. (2014b). A new compromise decision-making model based on TOPSIS and VIKOR for solving multi-objective large-scale programming problems with a block angular structure under uncertainty, International Journal of Engineering Transactions B: Applications, 27(11), 1673-1680.
Zadeh, L. A. (1974, August). Fuzzy Logic and Its Application to Approximate Reasoning. In IFIP Congress (Vol. 591).
Zammori, F. A., Braglia, M., & Frosolini, M. (2009). A fuzzy multi-criteria approach for critical path definition. International Journal of Project Management, 27(3), 278-291.
Zhang, Z., & Zhang, S. (2013). A novel approach to multi attribute group decision making based on trapezoidal interval type-2 fuzzy soft sets. Applied Mathematical Modelling, 37(7), 4948-4971.
Zolfani, S. H., Salimi, J., Maknoon, R., & Kildiene, S. (2015). Technology foresight about R&D projects selection; Application of SWARA method at the policy making level. Engineering Economics, 26(5), 571-580.