بهینه سازی قابلیت اطمینان نیروی کار با استفاده از زمانبندی شیفت های کاری

نوع مقاله: مقاله پژوهشی

نویسنده

استادیار دانشگاه پیام نور، تهران

چکیده

زمانبندی شیفت های کار و استراحت یکی از فرایند های برنامه ریزی تولید است که با ارائه جداول زمانی کاری بهینه می تواند زمینه ارتقاء و توسعه سازمان و نیروی کار را فراهم کند. در این پژوهش با در نظر گرفتن مفهوم مهندسی عوامل انسانی سعی شده است تا مدل ریاضی زمانبندی شیفت کاری با هدف کمینه سازی خطاهای انسانی و افزایش قابلیت اطمینان نیروی کار ارائه شود. عوامل انسانی یادگیری، فراموشی، خستگی و استراحت از جمله عوامل مهم در افزایش یا کاهش خطای انسانی است که در مدل سازی حاظر مورد توجه قرار گرفته است. مدل ارائه شده از نوع عدد صحیح غیر خطی است. برای بررسی مدل و مطالعه عوامل انسانی، مثالهای کوچک متعدد با پارامترهای انسانی مختلف در سه سطح وظایف آسان، متوسط و سخت حل گردید. برای حل نرم افزار لینگو مورد استفاده قرار گرفت. نتایج نشان داد که با تغییر پارامترهای انسانی برای وظایف مختلف ساختار شیفت کاری و استراحت تغییر می یابد. با افزایش سختی وظایف و کاهش سرعت یادگیری، تخصیص زمان های استراحت به شروع زمان کاری نزدیک تر می شود. با کاهش سختی کار و افزایش سرعت یادگیری شیفت کاری بهینه به سمت شیفت های کاری بدون استراحت نزدیک می شود. نتایج این پژوهش نشان داد که برای بهینه سازی قابلیت اطمینان می توان از مدل ارائه شده استفاده کرد و سازمانها و شرکت ها می توانند با در نظر گرفتن نوع وظایف و پارامترهای انسانی نیروی کارشان زمانبندی بهینه ای تعیین کنند.

کلیدواژه‌ها


عنوان مقاله [English]

Optimizing workforce reliability using shift scheduling

نویسنده [English]

  • mohammad akbari
چکیده [English]

Shift scheduling is one of the production planning processes that develop organization and workforces by providing optimized time table. In this study we tried to present mathematical model with minimization function of human errors regarding human factor engineering. Learning, forgetting, fatigue and rest are important factors which increase or decrease human errors and is modeled here. Provided model is nonlinear integer model. To investigate model and study human factors we solved small instances with different parameters in three categories: easy tasks, medium and hard tasks. To solve model we used LINGO software. Results indicated that shift schedules are different regarding different human parameters. With increasing difficulty of tasks and decreasing learning, rest breaks were closer to start of working shift. With decreasing difficulty of tasks and increasing learning, optimized schedule close to schedule without rest breaks. Also results showed that we can use the model to optimize human reliability, and organizations can define optimized shift schedules with considering task types and human parameters.

کلیدواژه‌ها [English]

  • shift scheduling
  • human factors
  • human error
  • workforce reliability
Akinci, B., Boukamp, F., Gordon, C., Huber, D., Lyons, C., & Park, K. (2006).A formalism for utilization of sensor systems and integrated project models for active construction quality control. Autom. Constr., 15(2), 124–138.

Bubb, H. (2005). Human reliability: a key to improved quality in manufacturing. Human Factors and Ergonomics Manufacturing and Service Industries, 15(4), 353–368.

Cacciabue, P.C. (1998). Modeling and simulation of human behavior for safety analysis and control of complex systems.Saf. Sci., 28(2), 97–110.

Comper, M.L.C., Padula, R.S. (2014). The effectiveness of job rotation to prevent work related musculoskeletal disorders: protocol of a cluster randomized clinical trial. BMC Musculoskelet.Disord. 15.

Dhillon, B.S. (2009). Human Reliability, Error, and Human Factors in Engineering Maintenance: with reference to Aviation and Power Generation, CRC Press, Taylor and Francis Group.

Di Pasquale, V., Iannone, R., Miranda, S., Riemma, S. (2013).An overview of human reliability analysis techniques in manufacturing operations.in: M.M. Schiraldi (Ed.), Operations Management, In Tech, (pp. 221–240).

ElMaraghy, W.H., Nada, O.N., ElMaraghy, H.A., (2008). Quality prediction for reconfigurable manufacturing systems via human error modelling. International Journal of Computer Integrated Manufacturing, 21(5), 584-598.

Folkard, S., Tucker, P. (2003). Shift work, safety, and productivity. Occupational Medicine, 53, 95–101.

Franceschini, F., Galetto, M., (2002). Asymptotic defectiveness of manufacturing plants: an estimate based on process learning curves, Int. J. Prod. Res. 40(3), 537–545.

Giuntini, R.E., Laboratories, W. (2000). Mathematical characterization of human reliability for multi-task system operations.in Systems, Man, and Cybernetics, IEEE International Conference on.

Givi, Z.S., Jaber, M.Y., Neumann, W.P. (2015). Modelling worker reliability with learning and fatigue.Applied Mathematical Modeling, 39, 5186–5199.

Givi, Z.S., Jaber, M.Y., Neumann, W.P. (September 2015). Production planning in DRC systems considering worker performance.Comput. Ind. Eng., 87(1), 317–327.

Griffith, C.D., Mahadevan, S. (2011). Inclusion of fatigue effects in human reliability analysis. Reliability Engineering & System Safety, 96(11), 1437–1447.

Grosse, E.H., Glock, C.H. (2013). An experimental investigation of learning effects in order picking systems, J. Manuf. Technol. Manage., 24(6) 850–872.

Grosse, E.H., Glock, C.H., Jaber, M.Y., Neumann, W.P. (2014). Incorporating human factors in order picking planning models: framework and research opportunities. Int. J. Prod. Res., (ahead-of-print), pp. 1–23.

Jansen, N.W.H., Kant, I., Van den Brandt, P.A. (2002). Need for recovery in the working population: description and associations with fatigue and psychological distress. International Journal of Behavioral Medicine, 9(4), 322–340.

Kern, C., &Refflinghaus, R. (2013).Cross-disciplinary method for predicting and reducing human error probabilities in manual assembly operations. Total Qual. Manage. Bus. Excel. 24(7–8), 847–858.

Koulamas, C. (1992). Quality improvement through product redesign and the learning curve. Omega, 20(2), 161–168.

Matthews, T. (2012). Dispelling the myths of behaviour and improving casual analysis. in: SPE Middle East Health, Safety, Security, and Environment Conference and Exhibition 2012 (MEHSSE), Sustaining World Energy through an Integrated HSSE and Business Approach, Abu Dhabi, UAE, 130–137.

Michalos, G., Makris, S., Chryssolouris, G. (2013). The effect of job rotation during assembly on the quality of final product. CIRP Journal of Manufacturing Science and Technology, 6(3), 187–197.

Myszewski, J.M. (2010). Mathematical model of the occurrence of human error in manufacturing processes. Quality and Reliability Engineering International, 26(8), 845-851.

Noroozi, A., Khakzad, N., Khan, F., MacKinnon, S., Abbassi, R. (2013). The role of human error in risk analysis: application to pre and post-maintenance procedures of process facilities. Reliability Engineering & System Safety, 119, 251-258

Onisawa, T. (1988).A representation of human reliability using fuzzy concepts, Information Sciences,  45(2), 153-173.

Smith, D.J. (2011). Reliability, maintainability and risk: Practical safety-related systems engineering methods. Access Online via Elsevier

Thomas, B.G., Nembhard, D.A., (2004). Preference based search approach for scheduling workers with learning and forgetting, Proc. MSOM Sponsored Session INFORMS Ann. Meeting, Oct. 2004.

Tucker, P., Folkard, S., Macdonald, I. (2003). Rest breaks and accident risk. Lancet, 361, 680