مدلی برای بهینه سازی زمانبندی نگهداری و تعمیرات پیشگیرانه برای سیستم‌های چند جزیی با استفاده از الگوریتم ژنتیک

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشگاه علوم و فناوری اطلاعات ایران (ایرانداک)

2 دانشگاه آزاد اسلامی مسجدسلیمان، دانشکده فنی و مهندسی، بخش مهندسی صنایع

چکیده

در این مقاله یک مدل بهینه زمانبندی نگهداری و تعمیرات (نت) پیشگیرانه غیر ادواری برای سیستم‌های چند جزیی (سری - موازی) ، بر مبنای حداکثر قابلیت دسترسی اجزای سیستم (که تعیین بازه بازرسی بهینه را به همراه دارد) ارایه شده است. همچنین در این مقاله علاوه بر تامین سطح قابلیت اطمینان مورد نیاز سیستم و ارضای سایر محدودیت‌های سیستمی (فعالیت‌های نت و منابع در دسترس)، کل هزینه‌های (مستقیم و غیر مستقیم) مرتبط با نت کمینه شده و برخی از فعالیت‌های نت شامل بازرسی و سرویس ساده، تعمیرات پیشگیرانه و تعویض پیشگیرانه برای هر جزء پیشنهاد شده است. از آنجا که مدل پیشنهادی دارای ساختاری پیچیده است، لذا به منظور حل آن از الگوریتم فراابتکاری ژنتیک (G.A) استفاده و نتایج ارایه گردیده است. در پایان، کارایی و استفاده از این مدل، در قالب یک مطالعه موردی، برای یک سیستم 10 جزیی سری - موازی (نزدیک به واقعیت) نشان داده شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Providing a model to optimize preventive maintenance schedules for multi-component systems using GA

نویسندگان [English]

  • Arman Sajedinejad 1
  • Meysam Lotfi 2
1 Iranian Research Institute for Information Science and Technology (IRANDOC)
2 Islamic Azad University of Masjed Soleyman, Industrial Eng. Department
چکیده [English]

In this paper, a non-periodic preventive maintenance scheduling optimization model for multi-component systems is provided based on the maximum availability of system components. In addition to providing the required level of system reliability and satisfy other system constraints (maintenance activities and available resources), total costs (direct and indirect) associated with minimal maintenance and, if necessary, one of the maintenance activities include in inspected and serviced simple, preventive repair and preventive replacement for each component, is proposed. Each of these activities uses various sources and regarding the position of the repairing component, effects differently on the reliability of the system. The costs considered include in direct costs (simple service, repair and replacement) as well as indirect costs (out of order and random failures). Since the proposed model has a complex structure, in order to solve the problem, the Genetic Algorithm (G.A) has been used and the results is presented. In the end, performance and use of this model, for a 10-part series - parallel is presented in the form of a case study.

کلیدواژه‌ها [English]

  • Preventive Maintenance
  • Accessibility
  • reliability
  • Cost
  • genetic algorithm (GA)
Ahire, S., Greenwood, G., Gupta, A., & Terwilliger, M. (2000). Workforce-constrained Preventive Maintenance Scheduling Using Evolution Strategies. Decision Science, 31(4), 833-859.

Bahrami Ghagr chami, K., Price, J. W., & Mathew, J. (2000). The constant – interval replacement model for preventive Maintenance : A new perspective. International jonrnal of Quality&Reliability management, 17(8), 822 – 838.

Bansal, R., Basker, B., & Husband, T. (1982). Optimization Methods for Electric Power Systems: An Overview. The Berkeley Electronic Press.

Barlow, R. E., & Hunter, L. C. (1960). Optimum preventive maintenance policies. Operation Research, Vol. 8 , 90-100.

Block, H. W., Langberg, N. A., & Savits, T. H. (1993). Repair Replacement policies. Journal of Applied probability 30/1, 194 – 206.

Bris, R., Chatelet, E., & Yalaoui, F. (2003). New method to minimize the preventive maintenance cost of series-parallel systems. . Reliability Engineering and System Safety, Vol. 82, 247-255.

British Standard Institute. (2001). BS EN 13306: Maintenance Terminology.

Budai, G., Huisman, D., & Dekker, R. (2005). Scheduling preventive Railway Maintenance activities. Journal of the operational research society, 37(9), 1035 – 1044.

Chan, G. K., & Asgarpoor, S. (2006). Optimum Maintenance policy with mark.V processes. Electric power systems research, 76, 452 – 456.

Chattopadlyay, G. (1999). Modelling and Analysis of warranty costs for second hand products. The university of Queen sland, bris bane , Australia.

Dekker, R. (1996). Applications of Maintenance optimization models :A review and Analysis. Reliability Engineering and system safety, 51, 229 – 240.

Doostparast, M., Kolahan, F., & Doostparast, M. A. (2014). Reliability-based Approach to Optimize Preventive Maintenance Scheduling for Coherent Systems. Reliability Engineering and System Safety, Vol. 126, 98-106.

Esmaeilian, M., Jafarnejad, A., & Jabali, E. (2012). Innovative Techniques for Scheduling Preventive Maintenance. Journal of Production and Operations Management, , Vol. 4(1), 1-20.

Finn, F. (1998). Pavement Management System-past, Present and Future. National Work Shop on Pavement Management in New Orleone, Federal Highway Administration, Vol. 62, 1, 16-22.

Gardent, R., & Nonant, L. (1963). Entretien et renouvellement d’un parc de machines. . Revue Francause de Recherche Operationelle, 7, 5–19.

Guo, Y., Lim, A., Rodrigues, B., & YU, S. (2007). Machine scheduling performance with maintenance and failure. mathematival and computer modeling, Volume 45, Issues 9–10, 1067 – 1080.

H. Wang. (2002). A survey of maintenance policies of deteriorating systems. European Journal of Operational Research, Vol. 139، 469–489.

Haj Shirmohamadi, A. (2011). Total Productive Maintenance (JIPM). Arkane Danesh Publication.

Jiang, R., & Ji, P. (2002 ). Age replacement policy : A multi-inttribute value model , , . Reliab. Eng. Syst. Saf., 76 , 311 – 318.

Jones, D. F., Mirrazavi, S. K., & Tamiz, M. (2002). Multi-objective meta-heuristic: An overview of the current state-of-the-art. European Journal of Operational Research, Vol. 137, 1-9.

Lapa, C. F., Mol, A. C., & Pereira, C. M. (2000). Maximization of a nuclear system availability through maintenance scheduling optimization using a genetic algorithm. Nuclear Engineering and Design, Vol. 196, 219-231.

Lapa, C. M., Pereira, A., C. M., & Frutuoso, P. F. (2003). Surveillance test policy optimization through genetic algorithms using non periodic intervention frequencies and considering seasonal constraints. Reliability Engineering System Safety, , Vol. 81.

Lie, C. H., & Chun, Y. H. (1986). An algorithm for preventive maintenance policy. IEEE Trans Reliab, Vol. 35, No. 1, 5-71.

Mona, A., Zuo, M. J., & R., T. (1997). Reliability based design systems considering – preventive Maintenance and minimal pair , International journal of Reliability. Quality and safety engineering 4/1, 55 – 711997.

Nakagawa, T. (1986). Periodic and sequential preventive maintenance policies. Journal of Applied Probability, 23(2), 536– 542.

Palarchio, G. (2003). Using MTBF to Determine Maintenance Interval Frequency is Wrong. http://www.mt-online.com/articles/1003viewpoint.cfm.

Pham, H., & Wang, H. (1996). Imperfect Maintenance. European journal of aperational research, 94, 425 – 431.

Quan, G., Greenwood, G. W., Liu, D., & Hu, S. (2006). Searching for multiobjective preventive maintenance schedules: Combining preferences with evolutionary algorithms. European Journal of Operational Research, 177, 1969–1984.

Rezy, N., Chelbi, A., & Xie, X. (2005). Modeling and optimizing a joint inventory control and preventive Maintenance strategy for a randomly failing production unit :analytical and simulation approaches. International journal of computer integrated manufacturing , 18(2-3), 225 – 235.

Sheriff, Y. S., & Smith, M. L. (1981). Optimal Maintenance models for system subject to failute – A review. NAVRES Logist Q 28, 47 – 71.

Tango, T. (1978). Extended Block replacement policy with usediters. Journal of Applied probability, vol.15, no.3, 560–572.

Tsai, Y. T., Wang, K. S., & Tsai, L. (2004). A study of availability-centered preventive maintenance for multicomponent systems. . Reliability Engineering and System Safety, 84, 261–270.

Zalala, A. M., & Fleming, P. J. (1997). Genetic Algorithms in Engineering Systems. London: the Institution of Electrical Engineers.