مدلی ریاضی مبتنی بر تحلیل پوششی داده ها برای تعیین استراتژی‌های رقابتی با درنظرگرفتن اندازه سازمان و پارامترهای همبسته (کاربرد موردی صنعت بیمه)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی صنایع،دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی، ابهر، زنجان، ایران

2 مدیریت بازرگانی-دانشکده علوم انسانی- دانشگاه آزاد ابهر-ایران

10.22054/jims.2018.25569.1883

چکیده

از آنجایی که سهم بازار کسب شده به عنوان یک شاخص کلیدی در شرکت‌های بیمه و یک پارامتر از نوع همبسته قلمداد می‌شود، (مجموع سهم بازار کسب شده توسط تمام رقبا بر حسب درصد برابر صد در صد است )، از طرفی حداکثر مقدار قابل کاهش در میزان منابع بکار رفته (ورودی‌ها) جهت رسیدن به مرز کارایی تابعی از میزان بزرگی ورودی می‌باشد، با این حال مدل‌های کلاسیک DEA قادر به در نظر گرفتن موارد ذکر شده نیستند. لذا معمولاً نتایج حاصل از مدل‌های مذکور غیر واقعی بوده و معتبر نیستند، در این تحقیق یک مدل ریاضی مبتنی بر DEA جهت تعیین استراتژی‌های رقابتی با در نظر گرفتن پارامترهای همبسته و اندازه سازمان‌های بیمه ارایه شده است، نتایج حاکی از این بود که بکارگیری مدل پایه ای CCR جهت حل مسأله مورد بررسی دارای نتایجی غیر عملی و متناقض با شرایط و محدودیت‌های دنیای واقعی است. این در حالی است که مدل پیشنهادی تحقیق بسیار کاراتر عمل کرده و نتایج حاصل از آن حاکی از این بود که مدل پیشنهادی، نقاط ضعف مدل های پایه‌ای DEA را در حوزه این مسایل به خوبی برطرف کرده است.

کلیدواژه‌ها


عنوان مقاله [English]

A DEA-based Mathematical Model to Determine the Competitiveness Strategies, Considering the Correlation Between parameters of and size of DMUs: Case Study in Insurance Industry

نویسندگان [English]

  • hamidreza jafari 1
  • parivash torki 2
1 department of industrial enginering,islamic azad university,abhar branch, zanjan,iran
2 Faculty of Human Sciences-Islamic Azad University Abhar Branch-iran
چکیده [English]

Since the acquisition of the market share is a correlational parameter, (the sum of the total market share of the competing organizations must be 100 percent) and the maximum in the present study, a DEA-based mathematical model was proposed to specify the competition strategies considering the correlational parameters and the magnitude and dimensions of insurance organizations. To examine the efficiency and the reliability of the proposed model, a real problem was solved in the domain of insurance industry and the results were compared with those of the basic CCR model. The findings revealed that the use of the basic CCR model to solve the problem produces unrealistic results that contradict the conditions and constraints of the real world. This was the case despite the fact that the proposed model proved more efficient and the results suggested that the proposed model improved the weaknesses of the basic DEA models in the domain of insurance institutes

کلیدواژه‌ها [English]

  • "Data Envelopment Analysis"
  • "Competitive Strategies"
  • "Insurance Industry"
  • "Organization Size
  • " "Correlated Parameters"
  • آذر. عادل، موتمنی. علیرضا (1383)، اندازه گیری بهره وری درشرکت های تولیدی به وسیله مدل های تحلیل پوششی داده ها(DEA)، مجله دانشور رفتار، سال یازدهم، شماره 8، ص 54-41.
  • حمزه پور. مهدی، محمدی. روح اله (1391)، بررسی کارایی شعب سازمان بیمه تامین اجتماعی در استان تهران با استفاده از روش تحلیل پوششی داده ها(DEA)، مجله الکترونیک پارس مدیر، شماره 4، ص 117-94.
  • خواجوی. شکراله، سلیمی فرد. علیرضا، ربیعه. مسعود (1384)، کاربرد تحلیل پوششی داده ها در تعیین پرتفویی از کاراترین شرکت های پذیرفته شده در بورس اوراق بهادار تهران، مجله علوم اجتماعی و انسانی دانشگاه شیراز، دوره22، شماره2(پیاپی43)، ص89-75.
  • دشتی نژاد. معصومه (1391)، تحلیل کارایی شرکت های پذیرفته شده در بورس اوراق بهادار با استفاده ازDEA ، مجله الکترونیک پارس مدیر، شماره 5، ص 18-5.
  • سینایی. حسنعلی، گشتاسبی مهارلویی. رسول (1391)، ارزیابی کارایی و عملکرد نسبی شرکت ها با رویکرد تحلیل پوششی داد ها به منظور تشکیل سبد سهام، مجله دانش حسابداری، سال سوم، شماره 11، ص132-105.
  • علیرضایی. محمدرضا، کشوری. ابوالفضل، هاشمی. سیده مریم (1384)، ارزیابی رشد بهره وری به کمک شاخص مالمکوئیست با رویکرد تحلیل پوششی داده ها، مجله بین المللی علوم مهندسی دانشگاه علم و صنعت، جلد16، شماره 2، ص 154-145.
  • علیرضایی. محمدرضا،کشوری. ابوالفضل، خلیلی. مسعود (1385)، تشخیص کارایی، کارایی ضعیف و ناکارایی واحدهای تصمیم گیرنده با اجرای برنامه مستقل از مقدارعدد غیر ارشمیدسی اپسیلن، مجله بین المللی علوم مهندسی دانشگاه علم و صنعت، جلد 17، شماره 1، ص 51-47.
  • فارسیجانی. حسن،آرمان. محمدحسین، حسین بیگی. علیرضا، جلیلی. اعظم (1390)، ارائه مدل تحلیل پوششی داده ها با رویکرد ورودی-خروجی محور، مجله چشم انداز مدیریت صنعتی، شماره 1، ص 56-39.
  • میر غفوری. سید حبیب اله، شفیعی رودپشتی. میثم، ندافی. غزاله (1390)، ارزیابی کارایی شرکت های مخابرات استانی، مجله اقتصاد و تجارت نوین،سال هفتم، شماره 25و26، ص 144-121.
    •     Abdul Kader, H. Adams, M and Hardwick, P  (2010), “The Cost Efficiency of Takafulnsurance Companies”, Geneva Pap. Risk Insur. Issues Pract. 35, 161–181.
    •     Adler, N. and Ggolany, B (2001), “Evaluation of Deregulated Airline Networks Using Data Eenvelopment Analysis Combined with Principal Componenet Analysis with an Application onWestern Europe”, European Journal of Operational Research. 132(2), 18-20.
    •     Adler, N. and J. Berechman, “Measuring airport quality from the airlines’ viewpoint: An application of data envelopment analysis,” Transport Policy, 8, 171–181 (2001).
    •    Afsordeh, M., and Moridipour, H.(2014), “Performance Evaluation of Representatives of Insurance Companies in Iran Using Analytic Network Process (ANP) and Data Envelopment Analysis (DEA)”, Euro-Asian Journal of Economics and Finance, Vol. 2, Issue : 4 (October2014), pp. 316-323.
    •    Banker,R.D. Charnes, A. and Cooper,W.W (1984), “Models for the Estimation of Technical and Scale Efficiencies in Data Envelopment Analysis.Management Science,30(9),1078-1092.
    •    Barros, C. P., Dumbo, S., and Wanke, P.(2014), “Efficiency determinants and capacity issues in Angolan insurance companies”, South African Journal of Economics Vol. 82,Issue:3.
    •    Bertoni, F. and Croce, A (2011), “The Productivity of European Life Insurers: Best-Practice Adop-Tion VS”, innovation. Geneva Pap. Risk Insur. Issues Pract. 36 (2), 165–185.
    •    Charnes, A. Cooper, W. W. and Rhodes, E (1978), “Measuring the Efficiency of Decision Making Units”, European journal of operational research, 2(6), 429-444.
    •    Charnes A. W.W.Cooper (1985), “Preface to Topics in Data Envelopment Analysis, Annals of Operational Research, (2).59-70.
    •    Dalkılıç, N., and Ada, A. A.( 2014), “Efficiencies of Life/Pension Insurance Industry in Turkey: An Application of Data Envelopment Analysis”, Journal of Applied Finance & Banking, Vol. 4, Issue no. 1, 2014, pp.181-191 ISSN: 1792-6580 (print version), 1792-6599 (online).Scienpress Ltd.
    •    Dyson, R. G., R. Allen, A. S. Camanho, V. V. Podinovski, C. S. Sarrico and E. A. Shale, “Pitfalls and protocols in DEA,” European Journal of Operational Research, 132, 245–259 (2001).
    •    Eling, M. and Huang, W (2013), “An Efficiency Comparison of the Non-Life Insurance Industry in the BRIC Countries”, Eur. J. Oper. Res. 226(3), 577-591.
    •    Farrell, M. J (1957), “The Measurement of Productive Efficiency”, Journal of the Royal Statistical Society. Series A (General), 253-290.
    •    Farzipoor Saen R, Memariani A, Hosseinzadeh Lotfi F. The effect of correlation coefficient among multiple input vectors on the efficiency mean in data envelopment analysis. Applied Mathematics and Computation 2005;162(2):503–21.
    • Francisco J. López, Johnny C. Ho & Alex J. Ruiz-Torres (2016) A computational analysis of the impact of correlation and data translation on DEA efficiency scores, Journal of Industrial and Production Engineering, 33:3, 192-204,
    •   Golestani, G (2007). “Iran 's State-Owned Insurance Companies in 2001-2005 Period Using Data Envelopment Analysis Model”, M. A. Thesis,Business Management Trends Insurance, Allameh Tabatabai University, 95-97(in Persian).
    •    Hong, Li. Yang, Wei. Zhixiang, Zhou. and Huang, Chengming (2013), “Resource Allocation Models Construction for the Reduction of Undersirable Outputs Based on DEA Methods, Mathematical and Computer Modeling , 913-926.
    •     Jenkins, L. and M. Anderson, “A multivariate statistical approach to reducing the number of variables in data envelopment analysis,” European Journal of Operational Research, 147, 51–61 (2003).
    •    Kao, C. and Hwang, S. N (2008), “Efficiency Decomposition in Two-Stage Data Envelopment Analysis: an Application to Non-Life Insurance Companies in Taiwan”, European Jornal of Oprerational Reasearch, 185(4), 418-429.
    •    Kweh, K. l., and Azizan, A. Z.( 2015), “Efficiency Performance of General Insurance Companies in Malaysia” ,Journal of advanced and applied science (JAAS), Vol. 03, Issue 04, pp. 119-124.1
    •    Lee, K. and K. Choi, “Cross redundancy and sensitivity in DEA models,” Journal of Productivity Analysis, 34,151–165 (2010).
    •    López, F. J., “Generalizing cross redundancy in data envelopment analysis,” European Journal of Operational Research, 214, 716–721 (2011).
    •   Luhnen, M (2009), “Determinants of Efficiency and Productivity in German Property-Liability Insurance: Evidence for 1995–2006. Geneva Pap”. Risk Insur. Issues Pract.34 (3), 483–http://dx.doi.org/10.1057/gpp.2009.10.
    •    Mahlberg, B. and Url, T (2010), “Single Market Effects on Productivity in the German Insurance Industry”, J. Bank. Financ. 34(7), 1540-1548.
    •    Martin D.H. Kocher, G. and Sutter, M (2000), “Measuring Efficeincy of German Football Teams by DEA”, University of Innsbruck, Australia, 4-5.
    •    Mecit, E. D., & Alp, I. (2013). A new proposed model of restricted data envelopment analysis by correlation coefficients.
    • Applied Mathematical Modelling, 37, 3407-3425.
    •    Mirzaei, H. and Safari A (2009), “Introduction of The Ranking of Iranian Insurance Companies”,Tazhhay Insurance World,(136/137), 16-18(in Persian).
    •   Nektarios, M. and Barros, C.P (2010), “A Malmquist Index for The Greek Insurance Industry Geneva Pap”, Risk Insur. Issues Pract. 35, 309-324.
    •    Pedraja-Chaparro, F., J. Salinas-Jiménez and P. Smith, “On the quality of the data envelopment analysis model,” Journal of the Operational Research Society, 50, 636–644 (1999).
    •   Sajedi, S., and Kandelousin N.( 2015), “An Assessment on Insurance Companies Efficiency Using Double-Stage Data Envelopment Analysis”, Int. J. Rev. Life. Sci., Vol. 5(9), pp.448-456.
    •    Sengupta J.K. Data envelopment analysis with maximum correlation. Int J Syst Sci 1989;20:2085-93.
    •     Smith, P., “Model misspecification in data envelopment analysis,” Annals of Operations Research, 73, 233–252(1997).
    •   Xie, X. Lu, W. Reising, J. and Stohs, M.H (2011), “Demutualisation, Control and Efficiency in the U.S. Life Insurance Industry”, Geneva Pap. Risk Insur. Issues Pract. 36 (2), 197–225.
    •   Yang, Z (2006), “A Two-Stage DEA Model to Evaluate the Overall Performance of Canadian Life and Health Insurance Companies”, Journal of Mathematical and computer Modeling,43(3),910-919.