بررسی مساله موجودی – مکان یابی- مسیریابی چندهدفه برای کالاهای فاسدشدنی و در شرایط وجود چند تامین کننده، با استفاده از رویکرد سناریو محور

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه خوارزمی، دانشکده فنی ، گروه مهندسی صنایع

2 دانشگاه خوارزمی

چکیده

در این مقاله یک زنجیره تامین سه سطحی متشکل از چند تامین کننده، چند انبار (توزیع کننده ) و چندین خرده فروش (مشتریان)، به صورت یک مساله جدید موجودی- مکان یابی- مسیریابی دو هدفه به گونه ای مدل شده است که کالاهای فاسدشدنی در یک افق زمانی محدود و متشکل از چند دوره زمانی از طریق مراکز توزیع به مشتریان ارسال می شوند. تقاضای خرده فروشان غیرقطعی است و به صورت سناریوهای گسسته با احتمال رخداد مشخص در مدل ریاضی اعمال شده است. ناوگان حمل و نقل ناهمگن است و مراکز توزیع، از یک جدول زمانی استفاده می کنند که از تداخل کار ماشینها و تخصیص اشتباه یک ماشین به بیش از یک مرکز توزیع در هر دوره جلوگیری خواهد کرد. سه روش مبتنی بر محاسبه فاصله تا نقطه آرمان، جهت حل مدل بررسی و تحلیل شده اند. در انتها نیز ضمن نتیجه گیری، پیشنهاداتی برای تحقیقات آتی ارائه شده است.

کلیدواژه‌ها


عنوان مقاله [English]

A bi-objective, multi-supplier & multi-perishable product inventory-location-routing problem: Scenario-based approach

نویسندگان [English]

  • zahra rafiee-majd 1
  • Hamidreza Pasandideh 2
1 Kharazmi University,Faculty of Engineering,Department of industrial engineering
2 Kharazmi University
چکیده [English]

In this paper, a three-echelon supply chain, consisting a number of suppliers, distribution centers (DCs), and retailers (customers) is modeled as an integrated bi-objective inventory- location – routing problem (ILRP) which, perishable products are delivered to the customers through DCs in a limited time horizon, consisting of several time periods. The retailers’ demand is stochastic and is applied on the model by the concept of discrete scenario. The transportation fleet is heterogeneous, and distribution centers use a timetable, which will prevent interference of the vehicles operation and allocation of a vehicle to more than one distribution center in each time period. Three methods of calculating the distance to the ideal point are used in to solve and analysis the model. At the end, besides concluding the discussion, recommendations are made for future studies.

کلیدواژه‌ها [English]

  • ILRP
  • perishable products
  • scenario
  • Multi-Objective Optimization
آقابزرگی نفیسه ، سجادی سید مجتبی ، علینقیان مهدی ، " ارائه مدلی پایدار جهت مکان یابی-  موجودی زنجیره تامین سه سطحی تک دوره ای شرکتهای کوچک و متوسط با تقاضای غیرقطعی "، فصلنامهعلمیپژوهشیمطالعاتمدیریتصنعتیسالسیزدهم،شماره 38، پاییز 94، صفحات 99 -132.

ایزد پناهی احسان ،" توسعه مدل برنامه ریزی چند هدفه، چند محصولی، چند دوره ای در زنجیره تامین با رویکرد بهبود هزینه مصرف انرژی تحت شرایط عدم قطعیت "، پایان نامه کارشناسی ارشد، دانشگاه یزد، 1391.

حاجی آقا بزرگی امیری علی ، " طراحی شبکه لجستیک امداد در شرایط بحران تحت عدم قطعیت  "، رساله دکترا، دانشگاه علم و صنعت ایران، سال 1390.

ستاک مصطفی ، علی اصغری زهرا ، " مساله یکپارچه مکان یابی-  مسیریابی- موجودی با امکان پاسخگویی به برخی مشتریان"، هشتمین کنفرانس بین المللی مهندسی صنایع، بهمن 90.

صفری سمیه ، پسندیده سیدحمیدرضا ، "ارائه مدل احتمالی مکان یابی مسیریابی موجودی زنجیره تامین با در نظر گرفتن ناوگان حمل و نقل ناهمگن"، همایش ملی پژوهش های مهندسی صنایع، شهریور 93.

علی احمدی علیرضا ، هاشمی امیری سید امید ، نوذری حامد ، حسین مرتجی سید طه ، " ارائه مدل ترکیبی مکان یابی موجودی، مسیریابی برای طراحی شبکه زنجیره های تامین چند سطحی"، نهمین کنفرانس بین المللی مهندسی صنایع، بهمن 91.  

علی نژاد علیرضا ، سالاری سامرند ، سیف آزاده ، " توسعه مدل مکان یابی شبکه ای در حالت عدم قطعیت (حالت استوار)"، فصلنامه علمی ـ پژوهشی مطالعات مدیریت صنعتی سال دهم، شماره 26، پاییز 1391، 115-138.

فخرزاد محمد باقر، نور محمدزاده زهره، " یکپارچه سازی مسائل زمانبندی تولید و تحویل با رویکرد مسیریابی وسیله نقلیه با ناوگان ناهمگن "، فصلنامه علمی– پژوهشی مطالعات مدیریت صنعتی،  دوره 13، شماره 38، پاییز 1394، صفحات 163-182. 

محمدی پور هیرش ، " مدلسازی عدم قطعیت در زنجیره تامین دو سطحی با پارامترهای فازی "، پایان نامه کارشناسی ارشد، دانشگاه تربیت مدرس، 1389.

 

Abo-Sinna, M. A., & Amer, A. H. (2005). Extensions of TOPSIS for multi-objective large-scale nonlinear programming problems. Applied Mathematics and Computation, 162(1), 243-256. doi: http://dx.doi.org/10.1016/j.amc.2003.12.087

Ahmadi Javid, A., & Azad, N. (2010). Incorporating location, routing and inventory decisions in supply chain network design. Transportation Research Part E: Logistics and Transportation Review, 46(5), 582-597. doi: http://dx.doi.org/10.1016/j.tre.2009.06.005

Bakker, M., Riezebos, J., & Teunter, R. H. (2012). Review of inventory systems with deterioration since 2001. European Journal of Operational Research, 221(2), 275-284. doi: http://dx.doi.org/10.1016/j.ejor.2012.03.004

Barbarosoǧlu, G., & Arda, Y. (2004). A two-stage stochastic programming framework for transportation planning in disaster response. Journal of the Operational Research Society, 55(1), 43-53.

Bertazzi, L., Bosco, A., & Laganà, D. (2015). Managing stochastic demand in an Inventory Routing Problem with transportation procurement. Omega, 56, 112-121.

Chen, C.-L., & Lee, W.-C. (2004). Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices. Computers & Chemical Engineering, 28(6–7), 1131-1144. doi: http://dx.doi.org/10.1016/j.compchemeng.2003.09.014

Chen, D., Chen, D., Sun, G., & Liu, G. (2014). Combined location routing and inventory problem of E-Commerce distribution system with fuzzy random demand.

Chen, W., Wiecek, M. M., & Zhang, J. (1998). Quality utility: a compromise programming approach to robust design. ASME DETC98/DAC5601.

Deb, K. (2001). Nonlinear goal programming using multi-objective genetic algorithms. Journal of the Operational Research Society, 291-302.

Deb, K. (2014). Multi-objective Optimization. In E. K. Burke & G. Kendall (Eds.), Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques (pp. 403-449). Boston, MA: Springer US.

Ghorbani, A., & Jokar, M. R. A. (2016). A hybrid imperialist competitive-simulated annealing algorithm for a multisource multi-product location-routing-inventory problem. Computers & Industrial Engineering, 101, 116-127.

Goodarzi, A. H., & Zegordi, S. H. (2016). A location-routing problem for cross-docking networks: A biogeography-based optimization algorithm. Computers & Industrial Engineering, 102, 132-146.

Goyal, S. K., & Giri, B. C. (2001). Recent trends in modeling of deteriorating inventory. European Journal of Operational Research, 134(1), 1-16. doi: http://dx.doi.org/10.1016/S0377-2217(00)00248-4

Guerrero, W. J., Prodhon, C., Velasco, N., & Amaya, C. A. (2013). Hybrid heuristic for the inventory location-routing problem with deterministic demand. International Journal of Production Economics, 146(1), 359-370. doi: http://dx.doi.org/10.1016/j.ijpe.2013.07.025

Hamta, N., Akbarpour Shirazi, M., Behdad, S., & Ehsanifar, M. (2017). A novel bi-level stochastic programming model for supply chain network design with assembly line balancing under demand uncertainty. Journal of Industrial and Systems Engineering, 10(2), 87-112.

Hiassat, A., Diabat, A., & Rahwan, I. (2017). A genetic algorithm approach for location-inventory-routing problem with perishable products. Journal of Manufacturing Systems, 42, 93-103.

Jepsen, M., Spoorendonk, S., & Ropke, S. (2013). A branch-and-cut algorithm for the symmetric two-echelon capacitated vehicle routing problem. Transportation Science, 47(1), 23-37.

Khor, C. S., Elkamel, A., Ponnambalam, K., & Douglas, P. L. (2008). Two-stage stochastic programming with fixed recourse via scenario planning with economic and operational risk management for petroleum refinery planning under uncertainty. Chemical Engineering and Processing: Process Intensification, 47(9), 1744-1764.

Kim, I. Y., & de Weck, O. L. (2005). Adaptive weighted-sum method for bi-objective optimization: Pareto front generation. Structural and multidisciplinary optimization, 29(2), 149-158.

Klibi, W., & Martel, A. (2012). Scenario-based Supply Chain Network risk modeling. European Journal of Operational Research, 223(3), 644-658. doi: http://dx.doi.org/10.1016/j.ejor.2012.06.027

Lai, Y.-J., Liu, T.-Y., & Hwang, C.-L. (1994). TOPSIS for MODM. European Journal of Operational Research, 76(3), 486-500. doi: http://dx.doi.org/10.1016/0377-2217(94)90282-8

Liu, S. C., & Lee, S. B. (2003). A two-phase heuristic method for the multi-depot location routing problem taking inventory control decisions into consideration. The International Journal of Advanced Manufacturing Technology, 22(11-12), 941-950. doi: 10.1007/s00170-003-1639-5

Liu, S. C., & Lin, C. C. (2005). A heuristic method for the combined location routing and inventory problem. The International Journal of Advanced Manufacturing Technology, 26(4), 372-381. doi: 10.1007/s00170-003-2005-3

Lopes, R. B., Barreto, S., Ferreira, C., & Santos, B. S. (2008). A decision-support tool for a capacitated location-routing problem. Decision Support Systems, 46(1), 366-375.

Marler, R. T., & Arora, J. S. (2004). Survey of multi-objective optimization methods for engineering. Structural and multidisciplinary optimization, 26(6), 369-395.

Momin, M., Mulgund, G., & Kanade, G. (2015). Uncertainty In Supply Chain In Construction Projects–A Case Study. International Journal of New Technologies in Science and Engineering, 2(2), 201-206.

Nekooghadirli, N., Tavakkoli-Moghaddam, R., Ghezavati, V. R., & Javanmard, S. (2014). Solving a new bi-objective location-routing-inventory problem in a distribution network by meta-heuristics. Computers & Industrial Engineering, 76, 204-221. doi: http://dx.doi.org/10.1016/j.cie.2014.08.004

Noorossana, R., & Ardakani, M. K. (2009). A weighted metric method to optimize multi-response robust problems. Journal of Industrial Engineering International, 5, 10-19.

Olivares-Benitez, E., González-Velarde, J. L., & Ríos-Mercado, R. Z. (2012). A supply chain design problem with facility location and bi-objective transportation choices. Top, 20(3), 729-753.

Petrovic, D. (2001). Simulation of supply chain behaviour and performance in an uncertain environment. International Journal of Production Economics, 71(1–3), 429-438. doi: http://dx.doi.org/10.1016/S0925-5273(00)00140-7

Petrovic, D., Roy, R., & Petrovic, R. (1999). Supply chain modelling using fuzzy sets. International Journal of Production Economics, 59(1–3), 443-453. doi: http://dx.doi.org/10.1016/S0925-5273(98)00109-1

Puga, M. S., & Tancrez, J.-S. (2016). A heuristic algorithm for solving large location–inventory problems with demand uncertainty. European Journal of Operational Research.

Ruzika, S., & Wiecek, M. M. (2005). Approximation methods in multiobjective programming. Journal of optimization theory and applications, 126(3), 473-501.

Seyedhosseini, S. M., Bozorgi-Amiri, A., & Daraei, S. (2014). An Integrated Location-Routing-Inventory Problem by Considering Supply Disruption. iBusiness, 2014.

Shen, Z.-J. M., & Qi, L. (2007). Incorporating inventory and routing costs in strategic location models. European Journal of Operational Research, 179(2), 372-389.

Soysal, M., Bloemhof-Ruwaard, J. M., Haijema, R., & van der Vorst, J. G. A. J. (2015). Modeling an Inventory Routing Problem for perishable products with environmental considerations and demand uncertainty. International Journal of Production Economics, 164, 118-133. doi: http://dx.doi.org/10.1016/j.ijpe.2015.03.008

Soysal, M., Bloemhof-Ruwaard, J. M., Haijema, R., & van der Vorst, J. G. A. J. (2016). Modeling a green inventory routing problem for perishable products with horizontal collaboration. Computers & Operations Research. doi: http://dx.doi.org/10.1016/j.cor.2016.02.003

Tavakkoli-Moghaddam, R., Forouzanfar, F., & Ebrahimnejad, S. (2013). Incorporating location, routing, and inventory decisions in a bi-objective supply chain design problem with risk-pooling. Journal of Industrial Engineering International, 9(1), 1-6.

Tavakkoli-Moghaddam, R., & Raziei, Z. (2016). A New Bi-Objective Location-Routing-Inventory Problem with Fuzzy Demands. IFAC-PapersOnLine, 49(12), 1116-1121.

Yang, X., Ma, H., & Zhang, D. (2010). Research into ILRIP for Logistics Distribution Network of Deteriorating Item Based on JITD. In R. Zhu, Y. Zhang, B. Liu, & C. Liu (Eds.), Information Computing and Applications (Vol. 105, pp. 152-160): Springer Berlin Heidelberg.

Zhalechian, M., Tavakkoli-Moghaddam, R., Zahiri, B., & Mohammadi, M. (2016). Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty. Transportation Research Part E: Logistics and Transportation Review, 89, 182-214. doi: http://dx.doi.org/10.1016/j.tre.2016.02.011

Zhang, Y., Qi, M., Miao, L., & Liu, E. (2014). Hybrid metaheuristic solutions to inventory location routing problem. Transportation Research Part E: Logistics and Transportation Review, 70, 305-323. doi: http://dx.doi.org/10.1016/j.tre.2014.07.010