مدیریت ریسک در پروژه‌های ساختمانی با در نظر گرفتن روابط متقابل ریسک پروژه: بیشینه نمودن مطلوبیت

نوع مقاله: مقاله پژوهشی

نویسندگان

گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه شمال، آمل، مازندران، ایران

چکیده

امروزه مدیریت ریسک راهکاری مناسب برای مقابله با ریسک‌هایی می‌باشد که ممکن است در یک پروژه رخ دهد. در تحلیل واکنش ریسک، ریسک‌ها اغلب دارای وابستگی متقابل فرض می‌شوند. درواقع ریسک‌ها در یک پروژه متقابلاً روی‌هم تأثیر می‌گذارند و ریسک مستقل به‌ندرت وجود دارد. اجرا و مدیریت پروژه‌های مختلف ازجمله پروژه‌های ساختمانی، دارای موارد مبهم فراوانی است. این‌گونه موارد که عدم قطعیت نامیده می‌شوند، نتیجه را گاهی بهتر و گاهی بدتر ازآنچه پیش ‌بینی‌ شده است، تغییر می‌دهند. در پروژه‌های ساختمانی که تعامل‌های متفاوتی در بین ارکان داخل و خارج آن در جریان است، پیچیدگی، چالش و عدم قطعیت بیشتر است. از این رو به‌منظور تحقق اهداف کمی و کیفی این دسته از پروژه‌ها با توجه به فعالیت‌ها و پیچیدگی ارتباطات آن‌ها استفاده از چارچوبی جهت شناسایی ریسک‌ها، نظارت و کنترل آن‌ها ضروری است. در این مقاله ابتدا یک پروژه ساختمانی را مد نظر قرار می-دهیم و با توجه به نظرات متخصصین و برگزای یک جلسه طوفان ذهنی ریسک های مربوط به آن را مشخص می نماییم. سپس با بهره گیری از نظرات متخصصین، استراتژی های پاسخ دهی به هر ریسک را شناسایی و درنهایت از یک مدل بهینه برای انتخاب استراتژی‌های پاسخ به ریسک با توجه به وابستگی متقابل ریسک استفاده می نماییم. یافته اصلی از طریق تحلیل پروژه موردنظر این است که توجه کم یا غفلت از وابستگی متقابل ریسک ها، مطلوبیت مورد انتظار را کاهش و هزینه پیاده‌سازی را افزایش می دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Risk management in construction projects taking into account the cross-project risks: utility maximization

نویسندگان [English]

  • Masoud Fazli
  • Ali Fallah
  • Amir KHakbaz
Department of Industrial Engineering, Engineering Faculty, Shomal University, Amol, Mazandaran, Iran
چکیده [English]

Nowadays, risk management is a good way to deal with the risks that may occur in a project. In risk response analysis, risks are often assumed to be interdependent. In fact, the risks affect each other in project. Implementing and managing various projects, including construction projects, has a lot of ambiguous cases. Such cases, called uncertainty, change the outcome sometimes better, and sometimes worse than anticipated. Complexity, challenge and uncertainty are more common in building projects with different interactions between the pillars inside and outside it. Therefore, in order to realize the quantitative and qualitative goals of these projects, it is necessary to use a framework for identifying risks, monitoring and controlling them in relation to the activities and complexity of their communications .In this article, first we consider a construction project and then, with experts' opinions and a brain storm meeting, we identified the risks involved, then, according to experts, we determined the strategy for each risk. Finally, we have used an optimal model for choosing risk response strategies with respect to the risks’ interdependence. The main finding through the analysis of the project is that the low attention or neglect of the interdependence of risk, reduces the expected utility and increases the implementation

کلیدواژه‌ها [English]

  • Project Risk Management
  • Uncertainty
  • Risk interdependence
  • Construction project
Ackermann, F., Eden, C., Williams, T., & Howick, S. (2007). Systemic risk assessment: a case study. Journal of the Operational Research Society, 58(1), 39-51.

 

Adner, R. (2006). Match your innovation strategy to your innovation ecosystem. Harvard business review, 84(4), 98.

 

Badenhorst, K. P., & Eloff, J. H. (1994). TOPM: a formal approach to the optimization of information technology risk management. Computers & Security, 13(5), 411-435.

 

Ben-David, I., & Raz, T. (2001). An integrated approach for risk response development in project planning. Journal of the Operational Research Society, 52(1), 14-25.

 

Buchan, D. H. (1994). Risk analysis--Some practical suggestions. cost Engineering, 36(1), 29.

 

Chapman, C. B. (1979). Large engineering project risk analysis. IEEE Transactions on Engineering Management, (3), 78-86.

 

Chapman, C., & Ward, S. (2003). Project risk management: processes, techniques, and insights. Wiley.

 

Dandage, R. V., Mantha, S. S., Rane, S. B., & Bhoola, V. (2018). Analysis of interactions among barriers in project risk management. Journal of Industrial Engineering International,14(1), 153-169.

 

Datta, S., & Mukherjee, S. K. (2001, June). Developing a risk management matrix for effective project planning--an empirical study. Project Management Institute.

 

De Gusmão, A. P. H., Silva, M. M., Poleto, T., e Silva, L. C., & Costa, A. P. C. S. (2018). Cybersecurity risk analysis model using fault tree analysis and fuzzy decision theory.International Journal of Information Management43, 248-260.

 

Elkjaer, M., & Felding, F. (1999). Applied project risk management-introducing the project risk management loop of control. Project management, 5(1), 16-25.

 

Fan, M., Lin, N. P., & Sheu, C. (2008). Choosing a project risk-handling strategy: An analytical model. International Journal of Production Economics, 112(2), 700-713.

 

Fang, C., & Marle, F. (2012). A simulation-based risk network model for decision support in project risk management. Decision Support Systems, 52(3), 635-644.

 

Fang, C., Marle, F., Xie, M., & Zio, E. (2013). An integrated framework for risk response planning under resource constraints in large engineering projects. IEEE Transactions on Engineering Management, 60(3), 627-639.

 

Fang, C., Marle, F., Zio, E., & Bocquet, J. C. (2012). Network theory-based analysis of risk interactions in large engineering projects. Reliability Engineering & System Safety, 106, 1-10.

 

Fazli, M., Afshari, A. J., & Hajiaghaei-Keshteli, M. (2018). Identification and ranking of risks in Green Building projects using the hybrid SWARA-COPRAS method. In Proceedings of the International conference of Iranian Operations Research Society, Kermanshah, Iran; pp. 1–5.

 

Flanagan, R., & Norman, G. (1993). Risk analysis for construction.

 

Ghassemi, A., & Darvishpour, A. (2018). A novel approach for risk evaluation and risk response planning in a geothermal drilling project using DEMATEL and fuzzy ANP. Decision Science Letters7(3), 225-242.

 

Haimes, Y. Y., & Chittester, C. G. (2005). A roadmap for quantifying the efficacy of risk management of information security and interdependent SCADA systems. Journal of Homeland Security and Emergency Management, 2(2).

 

Hatefi, M. A., & Seyedhoseini, S. M. (2012). Comparative Review on the Tools and Techniques for Assessment and Selection of the Project Risk Response Actions (RRA). International Journal of Information Technology Project Management (IJITPM), 3(3), 60-78.

 

Kayis, B., Zhou, M., Savci, S., Khoo, Y. B., Ahmed, A., Kusumo, R., & Rispler, A. (2007). IRMAS–development of a risk management tool for collaborative multi-site, multi-partner new product development projects. Journal of Manufacturing Technology Management, 18(4), 387-414.

 

Klein, J. H., Powell, P. L., & Chapman, C. B. (1994). Project risk analysis based on prototype activities. Journal of the Operational Research society, 45(7), 749-757.

 

Klein, S. A., & Hartmann, D. L. (1993). Spurious changes in the ISCCP dataset. Geophysical Research Letters, 20(6), 455-458.

 

Kujawski, E. (2002). Selection of technical risk responses for efficient contingencies. Systems Engineering, 5(3), 194-212.

 

Kwan, T. W., & Leung, H. K. (2011). A risk management methodology for project risk dependencies. IEEE Transactions on Software Engineering, 37(5), 635-648.

 

Marchwicka, E., & Kuchta, D. (2017). Modified optimization model for selecting project risk response strategies. Operations Research and Decisions, 27(2), 77-90.

 

Marincioni, V., Marra, G., & Altamirano-Medina, H. (2018). Development of predictive models for the probabilistic moisture risk assessment of internal wall insulation. Building and Environment, 137, 257-267.

 

Marle, F., & Vidal, L. A. (2011). Project risk management processes: improving coordination using a clustering approach. Research in Engineering Design, 22(3), 189-206.

 

Marle, F., Vidal, L. A., & Bocquet, J. C. (2013). Interactions-based risk clustering methodologies and algorithms for complex project management. International Journal of Production Economics, 142(2), 225-234.

 

Miller, R., Lessard, D. R., Michaud, P., & Floricel, S. (2001). The strategic management of large engineering projects: Shaping institutions, risks, and governance. MIT press.

 

Naji, H. I., & Ali, R. H. (2018). Risk response selection in construction projects. Civil engineering journal3(12), 1208-1221.

 

Piney, C. (2002, June). Risk response planning: selecting the right strategy. In The Fifth European project management conference, PMI Europe.

 

Pipattanapiwong, J., & Watanabe, T. (2000). Multi-party risk management process (MRMP) for a construction project financed by an international lender. In Proceeding of Construction Engineering and Management Symposium (pp. 85-92).

 

PMI, A. (2008). guide to the project management body of knowledge Project Management Institute. Newton Square, PA.

 

Seyedhoseini, S. M., Noori, S., & Hatefi, M. A. (2009). An integrated methodology for assessment and selection of the project risk response actions. Risk analysis29(5), 752-763.

 

Soofifard, R., & Bafruei, M. K. (2016). Fuzzy multi-objective model for project risk response selection considering synergism between risk responses. International Journal of Engineering Management and Economics6(1), 72-92.

 

Soofifard, R., & Bafruei, M. (2017). An optimal model for Project Risk Response Portfolio Selection (P2RPS). (case study: research institute of petroleum industry), Iranian J Manag Studies, 9(4), 741-65.

 

Soofifard, R., Bafruei, M. K., & Gharib, M. (2018). A Mathematical Model For Selecting The Project Risk Responses In Construction Projects. Int. J. Optim. Civil Eng8(4), 601-624.

 

Soofifard, R., & Gharib, M. (2017). A New Approach to Project Risk Responses Selection with Inter-dependent Risks. International Journal of Engineering-Transactions B: Applications30(5), 720-728.

 

Tsetlin, I., & Winkler, R. L. (2005). Risky choices and correlated background risk. Management Science, 51(9), 1336-1345.

 

Wu, D., Li, J., Xia, T., Bao, C., Zhao, Y., & Dai, Q. (2018). A multiobjective optimization method considering process risk correlation for project risk response planning. Information Sciences467, 282-295.

 

Zhang, Y., & Fan, Z. P. (2014). An optimization method for selecting project risk response strategies. International Journal of Project Management, 32(3), 412-422.

 

Zhang, Y. (2016). Selecting risk response strategies considering project risk interdependence. International Journal of Project Management, 34(5), 819-830.

 

Zhang, Y., & Zuo, F. (2016). Selection of risk response actions considering risk dependency. Kybernetes45(10), 1652-1667.

 

Zuo, F., & Zhang, K. (2018). Selection of risk response actions with consideration of secondary risks. International Journal of Project Management36(2), 241-254.