ارائه یک روش ترکیبی از تاپسیس فازی و تحلیل پوششی دادهها و برنامهریزی عدد صحیح برای انتخاب سبد پروژه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار دانشکده مهندسی صنایع و مکانیک دانشگاه ازاد اسلامی قزوین

2 دانشجوی کارشناسی ارشد مهندسی صنایع دانشگاه ازاد اسلامی واحد قزوین

چکیده

بحث انتخاب و برنامهریزی پروژه و تخصیص منابع محدود سازمان به پروژهها از مباحث بسیار با اهمیت در
ارتباط با مدیریت پروژهها در سازمانهای پروژه محور میباشد. این چنین سازمانهایی برای اجرای سیاستها و
اهداف خود و برای رشد و بقا و به اجرا در آوردن برنامههایشان، خود را ملزم به برنامهریزی و کنترل آن در
راستای ماموریت و استراتژی سازمان مییابند. که گاهی این برنامهها در مقام اجرا بصورت پروژههایی نمایان
خواهند شد. بدین منظور در این مطالعه سعی شده است تا به یک مدل ترکیبی ریاضی برای انتخاب و
برنامهریزی ترکیب بهینهای از پروژههایی که یک سازمان با آن روبرو است پرداخته شود. این مدل، یک مدل
ترکیبی است که از سه بخش و هر بخش از چند مرحله تشکیل شده است، که از ترکیب و با اصلاحاتی از
روش برنامهریزی ریاضی تحلیل پوششی دادهها )برای بازبینی اولیه پروژهها(، تصمیمگیری چند شاخصهی
تاپسیس در شرایط عدم قطعیت )برای ارزیابی و رتبهبندی پروژهها( و برنامهریزی خطی عدد صحیح )برای
انتخاب بهترین سبد با توجه به ارجحیتها و محدودیتهای سازمان( شکل گرفته است

کلیدواژه‌ها


عنوان مقاله [English]

Provide a performance evaluation method combining the fuzzy DEA model and the performance prism in software companies

نویسندگان [English]

  • Alireza Alinezhad 1
  • Esmaeil Ghorbanian Farah Abadi 2
چکیده [English]

The branches are more efficient to develop. This paper presents a model for evaluating the performance of the software companies that provide similar services to customers in various profound. Various parameters of the model to cover the interests of stakeholders, customers and ... To provide performance measurement systems in the Charter of the method used. Performance evaluation and assessment of various aspects such as the interests of employees, customers, shareholders and ... Is to be calculated. The performance of these branches according to the criteria developed by inconclusive data model of fuzzy data envelopment analysis to measure

کلیدواژه‌ها [English]

  • Performance measurement systems
  • performance prism
  • fuzzy DEA
  • efficiency Assistant Profes
Zanakis, S.H., Mandakovic, T., Gupta, S.K., Sahay, S., Hong, S., (1995). A review of program evaluation and fund allocation methods within the service and government sectors. Socioeconomic Planning Sciences 29 (1), 59–79.
Belton, V., Stewart, T., (2002). Multiple Criteria Decision Analysis. An Integrated Approach. Kluwer Academic Publishers.
Kirkwood, C.W., (1997). Strategic Decision Making. Multiobjective Decision Analysis with Spreadsheets. Duxbury Press.
Santhanam, R., Muralidhar, K., Scniederjans, M.,(1989). A zeroone goal programming approach for information system project selection. Omega 17 (6), 583–593.
Badri, M.A., Davis, D., Davis, D., (2001). A comprehensive 0–1 goal programming model for project selection. International Journal of Project Management. 19, 243–252.
Santhanam, R., Kyparisis, J., (1995).A multiple criteria decision model for information system project selection. Computers and Operations Research 22 (8), 807–818.
Kyparisis, G.J., Gupta, S.K., Ip, C.M., (1996). Project selection with discounted returns and multiple constraints. European Journal of Operational Research 94, 87–96.
Pisinger, D., (2001). Budgeting with bounded multiple-choice constraints. European Journal of Operational Research 129, 471–480.
Melachrinoudis, E., Kozanidis, G., (2002). A mixed integer knapsack model for allocating funds to highway safety improvements. Transportation Research Part A 36, 789–803.
Santhanam, R., Kyparisis, G.J., (1996). A decision model for interdependent information system project selection. European Journal of Operational Research 89, 380–399.
Albright, S.C., (1975). Allocation of research grants to university research proposals. Socio-economic Planning Sciences 9 (5), 189–195.
181 مطالعات مدیریت صنعتی، سال سیزدهم، شماره 73 ، تابستان 49
Kwak, N.K., Lee, C., (1998). A multicriteria decision-making approach to university resource allocation and information infrastructure planning. European Journal of Operational Research 110, 234–242.
Fandel, G., Gal, T., (2001). Redistribution of funds for teaching and research among universities: The case of North Rhine – Westphalia. European Journal of Operational Research 130, 111–120.
Mukherjee, K., Bera, A., (1995). Application of goal programming in project selection – A case study from the Indian coal mining industry. European Journal of Operational Research 82, 18–25.
Cook, W.D., Green, R.H., (2000). Project prioritisation: A resource-constrained data envelopment analysis approach. Socio-economic Planning Sciences 34, 85–99.
Oral, M., Kettani, O., Lang, P., (1991). A methodology for collective evaluation and selection of industrial R&D projects. Management Science 37 (7), 871–885.
Oral, M., Kettani, O., Cinar, U., (2001). Project evaluation and selection in a network of collaboration: A consensual disaggregation multi-criterion approach. European Journal of Operational Research 130, 332–346.
Golabi, K., Kirkwood,C.W., Sicherman, A.,(1981). Selecting a portfolio of solar energy projects using multiattribute preference theory. Management Science 27,174–189.
Abu-Taleb, M., Mareschal, B., (1995). Water resources planning in the middle east: Application of the PROMETHEE V multicriterion method. European Journal of Operational Research,81,500–511.
Mavrotas, G., Diakoulaki, D., Capros, P. (2003). Combined MCDA–IP approach for project selection in the electricity market .Annals of Operations Research 120,159–170.
Mavrotas, G., Diakoulaki, D., Caloghirou, Y., (2006). Project prioritization under policy restrictions. A combination of MCDA with 0–1 programming. European Journal of Operational Research.
ارائه یک روش ترکیبی از تاپسیس فازی و تحلیل پوششی دادهها.... 191
Tobin, R.L., (1999). A fast interactive solution method for large capital expenditure selection problems. European Journal of Operational Research 116, 1–15.
Archer, N.P., Ghasemzade, F., (1999). An integrated framework for project portfolio selection. International Journal of Project Management, vol. 17, Nom. 4, pp. 207-216.
Seiford, L.M., (1995). A Bibliography of data envelopment analysis. Technical Report, Department of Indusrial Engineering and Operations Research.
Banker, R.D., Charnes, A., Cooper, W.W., (1984). Some models for estimating technical and scale inefficiencies in data development analysis. Management Science, 9, 1078-1092.
Kabli, M.R., (2009). A multi-attribut decision Making methodology for selecting new R&D projects portfolio with a case study of Saudi oil refining industry. Ph.D. Thesis, University of Nottingham.
Jahanshahloo, G.R., Hosseinzadeh Lotfi, F., Izadikhah, M., (2006). Extension of the TOPSIS method for decision-making problems with fuzzy data. 181, 1544–1551.
Jahanshahloo, G.R., Hosseinzadeh Lotfi, F., Izadikhah, M., (2005). An algorithmic method to extend TOPSIS for decision-making problems with interval data. Applied Mathematics and Computation, 175, 1375–1384.
Mavrotas, G., Diakoulaki, D., Kourentzis, A., (2008). Selection among ranked projects under segmentation, policy and logical constraints. European Journal of Operational Research.
Clemen, R. T., Reilly, Terence, (2001). Making Hard Decisions with Decision Tools. Pacific Grove: Duxbury