نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت صنعتی، دانشگاه تهران،تهران،ایران

2 استادگروه مدیریت /دانشگاه تهران،تهران ،ایران

3 استاد گروه مدیریت ،دانشگاه تهران،تهران،ایران

4 استادیار، گروه صنایع، دانشگاه پلیتکنیک مونترال،کبک،کانادا

5 دانشیار،گروه مدیریت صنعتی، دانشگاه تربیت مدرس

چکیده

امروزه رقابت از سطح شرکت‌ها به میان زنجیره تامین آنها کشیده شده است و مدیریت مناسب زنجیره تامین، یکی ازمسائل پیش‌روی بنگاه‌های اقتصادی است. در این بین مسئله انتخاب تامین‌کننده و میزان خرید از هریک به عنوان شروع‌کننده این زنجیره و همچنین عامل تاثیرگذار بر معیارهای متعدد همچون کیفیت محصول نهایی، میزان مرجوعی، قیمت تمام شده محصول و ... از اهمیت ویژه‌ای برخورداراست. از طرف دیگر دنیای واقعی با عدم قطعیت بسیار زیادی رو به رو است. در چنین محیطی به منظور در نظر گرفتن عدم قطعیت، استفاده از رویکرد فازی توصیه شده‌است. هدف پژوهش حاضر تعیین میزان بهینه سفارش محصولات پروتئنی فسادپذیر شرکت خرده‌فروش در شرایط عدم قطعیت از تامین-کنندگان خود با درنظرگرفتن معیارهای پایداری است. ازاین رو ابتدا یک مدل چندهدفه تمام فازی برای زنجیره تامین حلقه بسته شرکت خرده فروش به منظور حداقل کردن میزان ضایعات و همچنین حداکثر کردن سود، رضایت مشتری، مقبولیت برند، کیفیت و حایشه سود در شرایط عدم قطعیت طراحی شده، سپس این مدل تمام فازی چندهدفه با استفاده از روش شارما و آگاروال (2018)، به مدل قطعی تک هدفه تبدیل شده و میزان سفارش بهینه هر محصول از هر تامین‌کننده بدست می‌آید. مدل پیشنهادی در یکی از شرکت‌های خرده فروشی ایران برای محصولات پروتئنی (سوسیس، کالباس و...) اجرا شده و بررسی نتایج، عملکرد خوب مدل را نشان می‌دهد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Designing a closed-loop supply chain multi-objective optimization model with the aim of supplier selection and order allocation (case study: Iran's retail stores for protein products)

نویسندگان [English]

  • Mina Kazemi Miyangaskari 1
  • Mohammad Reza Mehrregan 2
  • Hossein Safari 3
  • samira keivanpour 4
  • Mahmoud Dehghan Nayer 5

1 Ph.D. student of Industrial Management, ،Tehran University

2 Full Professor, Faculty of Management, Tehran University

3 Professor, Department of Management, University of Tehran, Tehran, Iran

4 Assistant Professor, Industrial Department, Polytechnic University of Montreal, Quebec, Canada

5 Associate Professor, Department of Industrial Management, Tarbiat Modares University

چکیده [English]

In today's competitive business landscape, the efficient management of supply chains has become a cornerstone of success for economic enterprises. Supplier selection, as the initial link in the supply chain, holds significant sway over various critical factors, such as product quality, return rates, and production costs. However, the real world is rife with uncertainties, making the application of a fuzzy approach highly advisable. This study's primary objective is to develop a model for supplier selection and order quantity determination for perishable protein products in a retail setting under uncertain conditions. Initially, a comprehensive fuzzy multi-objective model is designed for Kourosh Protein, a company in the closed-loop supply chain, aiming to minimize costs, waste, and maximize profit, customer satisfaction, quality, and profit margin in the face of uncertainty. Subsequently, this full-fledged fuzzy multi-objective model is transformed into a deterministic single-objective model using the Sharma and Agarwal method (2018), yielding optimal order quantities from each supplier. The model's practical implementation in an Iranian retail store for protein products, such as sausages, bologna, hamburgers, etc., demonstrates its potential to reduce costs and boost profits.
Introduction
The global population's rapid expansion and shifts in lifestyle have significantly elevated the food sector's importance in the global economy, specifically in Sustainable Food Supply Chain Management (SFSCM). SFSCM plays a pivotal role in balancing economic, social, and environmental criteria to optimize supply chain performance. Within the complex food supply chain, suppliers wield considerable influence due to their impact on product attributes, safety, quality, and perishability. Supplier selection, a critical facet of SFSCM, substantially affects a company's strategic and operational performance, product pricing, and quality. In this context, this research introduces a fully fuzzy multi-objective model (FFMOP) to enhance the sustainable supply chain performance of a retail company's protein products. Given the inherent uncertainties associated with supplier selection, the proposed model incorporates an extensive array of variables to simulate real-world scenarios. This innovative approach aims to address identified gaps in existing literature, providing a more robust and realistic tool for bolstering supply chain sustainability.
Materials and Methods
This study constructs a full fuzzy multi-objective model with the objective of determining optimal order quantities within the food supply chain while integrating sustainability criteria. The analyzed supply chain network encompasses multiple suppliers, a single retailer, and end consumers, characterized by multi-product and multi-level interactions. The model seeks to optimize profit, customer satisfaction, brand acceptance, quality, profit margin, and minimize waste production while determining the optimal order volume for each product from each supplier. Reviewing the existing literature reveals various approaches to tackle Full Fuzzy Multi-Objective Problems. This research employs the methodology proposed by Sharma & Aggarwal in 2018 to solve the FFMOP model. After defuzzification, the final model is solved using GAMS software to determine the optimal values of decision variables.
Results
This research utilizes a case study of an Iranian retail company with eight main suppliers providing 15 protein food products. However, the focus is primarily on four key products: sausages, bologna, hamburgers, and pizza cheese, which are examined. Data for the study was collected from historical company records and interviews with experts from June 2021 to 2022. Model parameters are defined using trapezoidal fuzzy numbers. A comparison of optimal order quantities with the company's actual orders and sales reveals that the proposed model for order allocation leads to reduced ordering, maintenance, and procurement costs for the company. Additionally, the model mitigates waste resulting from unsold products.
Conclusion
Supplier selection stands as a pivotal process in an effective supply chain, exerting substantial influence on a company's strategic outcomes and performance metrics. This study employs a full fuzzy multi-objective model to identify the most suitable supplier and determine optimal orders within a sustainable food supply chain context. To better mimic real-world conditions, variables and parameters are treated as trapezoidal fuzzy numbers. A comparison of the model's outputs with actual sales data indicates that this methodology aligns more accurately with sales figures. Consequently, applying this model has the potential to reduce waste production and economic consequences. The study's achievement lies in selecting a supplier through a methodology that simultaneously considers sustainability criteria within a fully fuzzy environment while determining optimal order quantities from various suppliers. Moreover, the model's flexibility allows for its application across diverse industries, including dairy and dried fruit, for procuring and selling an array of products from potential suppliers.

کلیدواژه‌ها [English]

  • Supplier Selection
  • Fully Fuzzy Multi-Objective Linear Programming
  • Supply Chain Performance Optimization
  • Closed-Loop Supply Chain
  1. باقرزاده آذر، محمد و دری، بهروز. (1389). به‌کارگیری ANP جهت انتخاب بهترین تأمین‌کننده در زنجیره تأمین. پژوهش‌های مدیریت در ایران، 14(4 (پیاپی 69)), 27-47.
  2. تیموری، احسان؛ امیری، مقصود؛ الفت، لعیا و زندیه، مصطفی. (1399). مدل انتخاب تأمین‌کننده، تخصیص سفارش و قیمت‌گذاری در مدیریت زنجیره تأمین‌ چند کالایی تک‌دوره‌ای و چند تأمین‌کننده با رویکرد روش‌های سطح پاسخ و الگوریتم ژنتیک. مدیریت صنعتی، 12(1)،1-23.
  3. جعفرنژادچقوشی، احمد; عرب، علیرضا و قاسمیان صاحبی، ایمن. (1398). ارائه یک مدل ریاضی به‌منظور ارزیابی تأمین‌کنندگان تاب‌آور و تخصیص اندازه سفارش در صنایع وابسته خودروسازی. تحقیق در عملیات در کاربردهای آن (ریاضیات کاربردی)، 16(4 (پیاپی 63))، 55-72.
  4. رزازی، محمدرضا و بانک توکلی، مهسا. (1394). انتخاب تأمین‌کنندگان و تخصیص سفارش به آن‌ها تحت شرایط پویا در زنجیره‌های تأمین. فصلنامه بین المللی مهندسی صنایع و مدیریت تولید،25(4).
  5. سیف برقی، مهدی و بخشی زاده، نسترن. (1401). یکپارچه­سازی ارزیابی تأمین‌کنندگان و طراحی زنجیره تأمین حلقه بسته تاب­آور و رتبه­بندی بر اساس روش فازی-مورا-نقطه مرجع. مطالعات مدیریت صنعتی،20(65)،1-37.
  6. صالح، هیلدا؛ حسین زاده لطفی، فرهاد؛ رستمی مال خلیفه، محسن و شفیعی، مرتضی. (1400). ارائه یک مدل ریاضی برای انتخاب تأمین کننده در زنجیره تأمین بر اساس محاسبه کارایی سود. پژوهش‌های نوین در ریاضی،7(32)، 177-186.
  7. عیدی، علیرضا و بختیاری، مهناز. (1395). ارزیابی و انتخاب تأمین‌کنندگان دو لایه در زنجیره تأمین سبز به روش تاپسیس فازی سلسله‌مراتبی مبتنی بر سطوح آلفا. چشم‌انداز مدیریت صنعتی، (2)6.91-121.
  8. مؤمنی، منصور و حسین زاده، مهرناز. (1391). ارائه رویکردی جدید برای حل مسائل برنامه ریزی خطی تمام فازی با استفاده از مفهوم رتبه بندی فازی. پژوهش‌های مدیریت در ایران، 16(4)، 171–188.
  9. محمدیان، علی اکبر و سیم خواه، مسعود. (1401). توسعه یک مدل انتخاب ترکیبی تأمین‌کنندگان با در نظر گرفتن ریسک عدم تأمین و اثر برند بر تقاضا. مطالعات مدیریت صنعتی،20(67)،203-236.
  10. نیلفروشان، نیما و طحانیان، احمدرضا. (1395). انتخاب تأمین کننده در زنجیره تأمین سبز (پایدار) جهت خرید رنگ موردنیاز خط کشی‌ها مطالعه موردی: معاونت حمل و نقل و شرکت مهندسی نیک اندیش. تصمیم گیری و تحقیق در عملیات،1 (2)،112-131.
  11. همراهی، رضا و موسوی، سیدمیثم. (1400). انتخاب تامین‌کنندگان در شبکه زنجیره تأمین تاب آور با استفاده از برنامه ریزی سازشی توسعه یافته در محیط تصمیم گیری گروهی فازی، چهاردهمین کنفرانس بین‌المللی انجمن ایرانی تحقیق درعملیات، مشهد.
  12. هوشمندی ماهر، مجید و امیری، مقصود. (1397). ارائه‌ی مدل برنامه ریزی استوار یکپارچه برای تخصیص سفارش در زنجیره‌ی تأمین. مطالعات مدیریت صنعتی.16(48)،73-107.
  13. Aghababayi, H., & Shafiei Nikabadi, M. (2021). An Integrated Fuzzy Model for Selecting Resilient Suppliers in Electronics Industry of Iran. Logistics, 5(4), 71.
  14. Aggarwal, S., & Sharma, U. (2013). Fully fuzzy multi-choice multi- objective linear programming solution via deviation degree. Int.J. Pure Appl. Sci. Technol. 19(1), 49–64.
  15. Aggarwal, S., & Sharma, U. (2016). A new approach for solving fully fuzzy multi-choice multi-objective linear programming problem. Ann. Fuzzy Math. Inform. 1, 439–459.
  16. Aggarwal, S., Sharma, U. (2016). Implementing deviation degree of two closed intervals to decode fully fuzzy multi-objective linear programming problem. Intell. Fuzzy Syst. 31, 443–455.
  17. Ada, N. (2022). Sustainable supplier selection in agri-food supply chain management. International Journal of Mathematical, Engineering and Management Sciences, 7(1), 115.
  18. Babbar, C., & Amin, S. H. (2018). A multi-objective mathematical model integrating environmental concerns for supplier selection and order allocation based on fuzzy QFD in beverages industry. Expert Systems with Applications, 92, 27-38.
  19. Bellman, R., & Zadeh, L. (1970). Decision-Making in a Fuzzy Environment Author. Management Science,17(4), 140–164.
  20. Bigdeli, H., Hassanpour, H., & Tayyebi, J. (2019). Multi-objective security game with fuzzy payoffs. Iranian Journal of Fuzzy Systems, 16(1), 89-101.
  21. Cheng, H., Huang, W., Zhou, Q., & Cai, J. (2013). Solving fuzzy multi-objective linear programming problems using deviation degree measure and weighted max-min method. Applied Mathematical Modelling. 37,6855–6869.
  22. Das, K. (2015). An approach to solve fully fuzzy multi- objective linear programming problems. J. New Technol. Sci. Eng. 2(4),227–232.
  23. Dubey, D., & Mehra, A. (2014). A bipolar approach in fuzzy multi- objective linear programming. Fuzzy Sets Syst. 246, 127–141.
  24. Ezzati, R., Khorram, E., & Enayati, R. (2015). A new algorithm to solve fully fuzzy linear programming problems using the MOLP problem. Appl. Math. Modell. 39(12), 3183–3193.
  25. Ghosh, D., & Chakraborty, D. (2015). A method for capturing the entire fuzzy non-dominated set of a fuzzy multi-criteria optimization problem. Fuzzy Sets and Systems, 272, 1-29.
  26. Goli, A., Zare, H. K., Tavakkoli‐Moghaddam, R., & Sadegheih, A.
  27. (2020). Multi-objective fuzzy mathematical model for a financially constrained closed‐loop supply chain with labor employment. Computational Intelligence, 36(1), 4-34.
  28. Grzegorzewski, P. (2002). Nearest interval approximation of a fuzzy number. Fuzzy Sets Syst. 130, 321–330.
  29. Hamdan, S., & Cheaitou, A. (2017). Dynamic green supplier selection and order allocation with quantity discounts and varying supplier availability. Computers & Industrial Engineering, 110, 573-589.
  30. Hernández-Jiménez, B., Ruiz-Garzón, G., Beato-Moreno, A., & Osuna-Gómez, R. (2021). A Better Approach for Solving a Fuzzy Multiobjective Programming Problem by Level Sets. Mathematics, 9(9), 992.
  31. Hadi-Vencheh, A., Rezaei, Z., & Razipour, S. (2014). Solving fully fuzzy multiple objective linear programming problems: a new perspective.J. Soft Comput. Appl. 1–4.
  32. Jayalakshmi, M., & Pandian, P. (2014). Solving fully fuzzy multi- objective linear programming problems. J. Sci. Res. 3(4), 1–6.
  33. Jagan Mohan Reddy, K., Neelakanteswara Rao, A., & Krishnanand, L. (2019). A review on supply chain performance measurement systems. Procedia Manufacturing, 30, 40–47.
  34. Javad, M. O. M., Darvishi, M., & Javad, A. O. M. (2020). Green supplier selection for the steel industry using BWM and fuzzy TOPSIS: a case study of Khouzestan steel company. Sustainable Futures, 2, 100012.
  35. Jamwal, P.K., & Hussain, S. (2020). A fuzzy based multi-objective optimization of multi echelon supply chain network. J. Intell. Fuzzy Syst. 39, 3057–3066.
  36. Ishibuchi, H., & Tanaka, H. (1990). Multi-objective programming in optimization of the interval objective function. J. Oper. Res. 48,219–225.
  37. -Hernández-Jiménez, B., Ruiz-Garzón, G., Beato-Moreno, A., & Osuna- Gómez, R. (2021). A Better Approach for Solving a Fuzzy Multi-objective Programming Problem by Level Sets. Mathematics, 9(9), 992.
  38. Kao, J. C., Wang, C. N., Nguyen, V. T., & Husain, S. T. (2022). A fuzzy mcdm model of supplier selection in supply chain management. Intelligent Automation and Soft Computing, 1451-1466.
  39. -Ketchen, D. J., & Hult, G. T. M. (2007). Bridging organization theory and supply chain management: The case of best value supply chains. Journal of Operations Management, 25(2), 573–580.
  40. Kumar, A., Kaur, J., & Singh, P. (2011). A new method for solving fully fuzzy linear programming problems. Math. Modell. 35,817–823.
  41. Khan, I.U., Ahmad, T., & Maan, N. (2013). A simplified novel technique for solving fully fuzzy linear programming problems. JOTA 159,536–546.
  42. Kaur, J., & Kumar, A. (2013). Mehar’s method for solving fully fuzzy linear programming problems with LR fuzzy parameters. Applied Mathematical Modelling, 37(12-13), 7142-7153.
  43. Lu, K., Liao, H., & Zavadskas, E. K. (2021). An overview of fuzzy techniques in supply chain management: bibliometrics, methodologies, applications and future directions. Technological and Economic Development of Economy, 27(2), 402-458.
  44. Lotfi, F.H., Allahviranloo, T., Jondabeh, M.A., & Alizadeh, L. (2009). Solving a full fuzzy linear programming using lexicography method and fuzzy approximation solution. Applied Mathematical Modelling.33, 3151–3156.
  45. Mohanaselvi, S., & Ganesan, K. (2012). Fuzzy Pareto-optimal solution to fully fuzzy multi-objective linear programming problem. J. Comput. Appl. 52(7), 0975–8887.
  46. Nasseri, S.H., Khalili, F., Nezhad, N.A.T., & Mortezania, S.M. (2014). A novel approach for solving fully fuzzy linear programming problems using membership function concepts. Ann. Fuzzy Math. Inf. 7(3), 355–368.
  47. Pamucar, D., Torkayesh, A. E., & Biswas, S. (2022). Supplier selection in healthcare supply chain management during the COVID-19 pandemic: a novel fuzzy rough decision-making approach. Annals of Operations Research, 1-43
  48. Sufiyan, M., Haleem, A., Khan, S., & Khan, M. I. (2019). Evaluating food supply chain performance using hybrid fuzzy MCDM technique. Sustainable Production and Consumption, 20, 40-57.
  49. Sengupta, A., Pal, T.K., & Chakraborty, D. (2001). Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming. Fuzzy Sets Syst. 119, 129–138.
  50. -Sharma, U., & Aggarwal, S. (2018). Solving fully fuzzy multi-objective linear programming problem using nearest interval approximation of fuzzy number and interval programming. International Journal of Fuzzy Systems, 20(2), 488-499.
  51. Sun, Y. (2020). A Fuzzy Multi-Objective Routing Model for Managing Hazardous Materials Door-to-Door Transportation in the Road-Rail Multimodal Network with Uncertain Demand and Improved Service Level. IEEE Access, 8, 172808–172828.
  52. Sobhanallahi, M. A., Mahmoodzadeh, A., & Naderi, B. (2020). A novel fuzzy multi-objective method for supplier selection and order allocation problem using NSGA II. Scientia Iranica, 27(1), 481-493.
  53. Tavakolian, M., Ershadi, M., & Azizi, A. (2020). Modeling the problem of selecting and assigning orders to suppliers based on the Goal planning, QFD and ANP combined approach. Journal of New Researches in Mathematics, 6(26), 61-80.
  54. Tavana, M., Shaabani, A., Di Caprio, D., & Amiri, M. (2021). An integrated and comprehensive fuzzy multicriteria model for supplier selection in digital supply chains. Sustainable Operations and Computers, 2, 149-169.
  55. Zimmermann, H. J. (1978). Fuzzy Programming And Linear Programming With Several Objective Functions. Fuzzy Sets and Systems, 1(1), 45–55.
  56. Zekhnini, K., Cherrafi, A., Bouhaddou, I., Benghabrit, Y., & Garza- Reyes, J. A. (2020). Supplier selection for smart supply chain: An adaptive fuzzy-neuro approach.