نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادگروه مهندسی صنایع ،دانشکدگان فنی دانشگاه تهران،تهران،ایران

2 دانش آموخته کارشناسی ارشد،گروه مهندسی صنایع ،دانشکدگان فنی دانشگاه تهرانفتهران،ایران

چکیده

در جهان رقابتی، یکی از مهم‌ترین راهکارها برای بهبود عملکرد زنجیره تأمین شرکت‌های تولیدی، برنامه‌ریزی یکپارچه‌ی بخش‌های تولید و توزیع است. دو معضل اصلی برای دندان پزشکان و بیماران، عدم تحویل به موقع پروتزهای دندانی و فرآیند چندباره تولید و اصلاحات پروتزها می‌باشد. در این پژوهش، در راستای حل این معضلات، یک مدل ریاضی برای حل مسئله برنامه‏ریزی یکپارچه تولید و توزیع در یک زنجیره‏تأمین تولید پروتزهای ثابت دندان در محیط تولید افزایشی توسعه یافته ‌است. توابع هدف این مدل شامل کمینه‏کردن هزینه تولید و ارسال سفارشات و کمینه کردن مجموع وزن‌دار تأخیرات است. همچنین، تصمیمات مرتبط با ارسال دسته‌ای سفارشات و یافتن بهترین مسیر برای ارسال هر دسته نیز در نظر گرفته شده است. به منظور تک هدفه کردن مدل ریاضی و یافتن جواب‏های پارتو، از روش اپسیلون محدودیت تقویت‏شده استفاده شده ‌است. در نهایت، به منظور اعتبارسنجی مدل ریاضی، یک مثال عددی و یک مطالعه موردی ارائه و همچنین، تحلیل حساسیت روی پارامترهای کلیدی مدل پیشنهادی انجام شده است. نتایج به‏ دست آمده بیانگر کاهش قابل ملاحظه‌ی هزینه‌های تولید و توزیع و همچنین افزایش سطح رضایت مشتریان با توجه به کاهش میزان تأخیرات در تحویل محصولات به مشتریان است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Integrated production and distribution scheduling in a dental prosthetics supply chain under additive manufacturing environment

نویسندگان [English]

  • S.Ali Torabi 1
  • Yasin Heidari 2

1 Professor, Department of Industrial Engineering, Technical Faculty, Tehran University, Tehran, Iran

2 Master's degree student, Department of Industrial Engineering, Faculty of Engineering, Tehran University, Fetharan, Iran

چکیده [English]

In a competitive world, one of the most crucial ways to enhance the supply chain performance of manufacturing companies is through integrated scheduling of production and distribution activities. Two significant concerns for dentists and patients include delayed denture deliveries and the multiple production and correction processes for dentures. This research addresses these concerns by developing a mixed-integer linear programming model for solving the integrated production and distribution scheduling problem in a fixed denture supply chain operating under an additive manufacturing environment. The objective functions of this model aim to minimize the cost of production and distribution orders while reducing weighted delays. The Augmented Epsilon Constraint Method is employed to identify Pareto-optimal solutions. To validate the mathematical model, a numerical example and a case study are presented, and various sensitivity analyses are conducted on key model parameters. The numerical results demonstrate substantial improvements in total costs and customer satisfaction levels.
Introduction
A supply chain (SC) comprises several interconnected echelons and processes, where an integrated perspective can lead to optimal overall SC performance. Simply improving an organization's internal processes is insufficient for competitiveness in the market; establishing effective relationships with suppliers, distributors, and other SC stakeholders is essential. Achieving maximum value along the SC involves focusing on cost reduction through cost-effective decision-making. In the past decade, the rising adoption of 3-D printing and additive manufacturing technologies in SCs, as a prominent disruptive technology in the Industry 4.0 era, has created numerous opportunities for improving manufacturing SCs compared to traditional production methods. These opportunities include reduced setup and production times, lower safety stock levels, and fewer processing steps. Additive manufacturing has found applications in various fields, particularly in denture production. This research addresses two primary concerns in the field: timely denture delivery and the multiple production and correction processes associated with dentures. A novel mathematical model is developed to tackle these issues, aiming to solve the integrated production and distribution scheduling problem in a fixed denture supply chain operating within an additive manufacturing environment. The objective functions of this model aim to minimize the costs associated with production and order distribution while minimizing the weighted total delays.
Materials and Methods
A mixed-integer linear programming model is devised to address the problem outlined in this paper. The Augmented Epsilon Constraint Method is applied to identify Pareto-optimal solutions. To validate the mathematical model, a numerical example and a case study are presented, and several sensitivity analyses are conducted on key model parameters to elucidate their critical roles in the final solutions.
Discussion and Results
A case study is provided to demonstrate the practical applicability of the developed model. Sensitivity analyses on demand data highlight the substantial impact of demand management on final solutions. This research presents a two-objective optimization model to address the simultaneous scheduling of production and order delivery in a three-tier dental prosthesis supply chain. The first tier comprises a dental prosthesis production laboratory, while the second and third tiers include distributors and dentists (final customers). The objective functions include the minimization of total order delivery costs and the average weighted lateness of delivered products from a fixed dental prosthesis production laboratory. Constraints encompass delivery time delays, order allocation to customers, capacity limitations, calculations of time to reach each customer, and vehicle routing. Given that this research problem falls into the category of multi-objective problems, the Augmented Epsilon Constraint Method is employed to obtain Pareto-optimal solutions. To investigate and implement the proposed model, a fixed dental prosthesis production laboratory in Neka City is examined. The numerical results indicate the existence of a trade-off between the problem's objectives.
Conclusions
This paper presents a bi-objective model to address the integrated production and distribution scheduling problem in a three-tier dentures supply chain, aiming to minimize total delivery costs and the average weighted tardiness. The first tier includes a dentures production laboratory, while the second and third tiers comprise distributors and dentists, respectively. Numerical results based on a real case study demonstrate the practical applicability of the model. Several avenues for future research include considering uncertainty in input data and developing efficient meta-heuristic algorithms for solving large-scale instances.

کلیدواژه‌ها [English]

  • Integrated production and distribution scheduling
  • Additive manufacturing
  • Batch delivery
  • Augmented Epsilon constraint method
  1. خلیفه زاده، ساسان.، سیف برقی، مهدی. (1393). یک مدل برنامه‌ریزی دو هدفه برای یک سیستم تولید- توزیع یکپارچه و حل با استفاده از الگوریتم ژنتیک رتبه‌ای. مطالعات مدیریت صنعتی،12(34)،63-88.

 

  1. Assarzadegan, P., & Rasti-Barzoki, M. (2016)."Minimizing sum of the due date assignment costs, maximum tardiness and distribution costs in a supply chain scheduling problem", Applied Soft Computing, 47, 343-356.
  2. Australian and NewZealand Academy of Management,ANZAM, 2015.
  3. Chopra, S. and P. Meindl (2007), "Supply chain management. Strategy, planning &operation, in Das summa summarum des management", Springer. p. 265-275.
  4. Hall, N. G., & Potts, C. N. (2003). "Supply chain scheduling: Batching and delivery". Operations Research, 51(4), 566-584.
  5. Jamili, N., Ranjbar, M., & Salari, M. (2016), "A bi-objective model for integrated scheduling of production and distribution in a supply chain with order release date restrictions", Journal of Manufacturing Systems, 40, 105-118.
  6. Kazemi, H., Mazdeh, M. M., & Rostami, M. (2017), " The two stage assembly flow-shop scheduling problem with batching and delivery", Engineering Applications of Artificial Intelligence, 63, 98-107.
  7. Liu, P., Huang, S. H., Mokasdar, A., Zhou, H., & Hou, L. (2014). The impact of additive manufacturing in the aircraft spare parts supply chain: supply chain operation reference (scor) model based analysis. Production planning & control, 25(13-14), 1169-1181.
  8. Mahdavi Mazdeh, M., Hamidinia, A., & Karamouzian, A. (2011), "A mathematical model for weighted tardy jobs scheduling problem with a batched delivery system", International Journal of Industrial Engineering Computations, 2(3), 491-498.
  9. Mavrotas, G. (2009), "Effective implementation of the ε-constraint method in multi-objective mathematical programming problems", Applied mathematics and computation, 213(2), 455-465.
  10. Mazdeh, M. M., Haddadm, H., & Ghanbari, P. (2012). Solving a single machine stochastic scheduling problem using a branch and bound algorithm and simulated annealing. International Journal of Management Science and Engineering Management, 7(2), 110.
  11. Mazdeh, M., Esfahani, A., Sakkaki, S., & Pilerood, A. (2012). Single-machine batch scheduling minimizing weighted flow times and delivery costs with job release times. International Journal of Industrial Engineering Computations, 3(3), 347-364.
  12. Mohammadi, S., Al-e-Hashem, S. M., & Rekik, Y. (2020). "An integrated production scheduling and delivery route planning with multi-purpose machines: A case study from a furniture manufacturing company", International Journal of Production Economics, 219, 347-359.
  13. Noroozi, A., Mazdeh, M. M., Heydari, M., & Rasti-Barzoki, M. (2018), "Coordinating order acceptance and integrated production-distribution scheduling with batch delivery considering Third Party Logistics distribution", Journal of manufacturing systems, 46, 29-45.
  14. Özceylan, E., Çetinkaya, C., Demirel, N., & Sabırlıoğlu, O. (2018). Impacts of additive manufacturing on supply chain flow: A simulation approach in healthcare industry. Logistics, 2(1), 1.
  15. Pei, J., Liu, X., Pardalos, P. M., Fan, W., Yang, S., & Wang, L. (2014), "Application of an effective modified gravitational search algorithm for the coordinated scheduling problem in a two-stage supply chain", The International Journal of Advanced Manufacturing Technology,70(14),335-348.
  16. Rostami, M., Kheirandish, O., & Ansari, N. (2015), "Minimizing maximum tardiness and delivery costs with batch delivery and job release times", Applied Mathematical Modelling,39(16),4909-4927.
  17. Shen, J., & Zhu, Y. (2019). An uncertain programming model for single machine scheduling problem with batch delivery. Journal of Industrial & Management Optimization, 15(2), 577.
  18. Strong, D., Kay, M., Conner, B., Wakefield, T., & Manogharan, G. (2018). Hybrid manufacturing–integrating traditional manufacturers with additive manufacturing (AM) supply chain. Additive Manufacturing, 21, 159-173.
  19. Tuck, C., Hague, R., & Burns, N. (2007). Rapid manufacturing: impact on supply chain methodologies and practice. International journal of services and operations management,3(1),1-22.
  20. Velázquez, D. R. T., Simon, A. T., Helleno, A. L., & Mastrapa, L. H. (2020). "Implications of additive manufacturing on supply chain and logistics", Independent Journal of Management & Pr