نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادگروه مدیریت ،دانشگاه تهران،ایران

2 دانشیارگروه مدیریت دانشگاه تهران،تهران،ایران

3 استاد گروه صنایع دانشگاه علم و صنعت ایران

4 دانشیارگروه مدیریت دانشگاه تهران

5 دانشجوی دکتری مدیریت صنعتی، دانشگاه تهران

چکیده

به کارگیری مدیریت زنجیره تامین در صنعت ساخت با دشواری های جدی از قبیل طبیعت گذرای پروژه ، سفارشی سازی زیاد، تکرارپذیری پایین فعالیت ها، عدم وجود خط تولید و وابستگی رفت و برگشتی فعالیت ها مواجه است. زنجیره تامین پروژه های ساخت پتروشیمی، سیستم های بسیار پیچیده ای هستند که عملکرد نهایی آنها به ترکیب صدها تصمیم اتخاذی در چندین شرکت مستقل بستگی داشته و تعاملات ذینفعان و ویژگی های خاص هر پروژه، در زمره ی پدیده های پیچیده ای هستند که عناصر و متغیرهای بسیاری در آنها دخیل بوده و بصورتی درهمبافته، با یکدیگر در تعاملند. از آنجا که مدل سیستم مانا ریشه در سایبرنتیک سازمانی داشته و یکی از روش های سـاختار یافتـه برای مواجهه با مسائل پیچیده و ساختار نایافته است، اتخاذ چنین رویکردی، تحلیلگر را قادر مـی سـازد تـا عمیقـاً از اشـکالات کـارکردی سیسـتم کنونی، آگاهی یافته و چگـونگی اعمـال تغییـرات در طراحـی سیسـتم بـه منظـور سازگاری با آشـفتگی هـای داخلـی و خـارجی را دریابـد. در پژوهش حاضر، با توجه به این ماهیـت آسـیب شناسـانه و ساختارگرایانه، مدیریت زنجیره تامین یک پروژه پتروشیمی عارضـه یـابی شـده است. این عارضه یابی، منجر به ارائه مدل و شناسایی نقاط ضعف زنجیره تامین از منظر سیستم های پنج گانه و کانال های ارتباطی، جهت دستیابی به مانایی شده اسـت. اعتبار روش شناسی و یافته های پژوهش از مجرای مشارکت جمعی از خبرگان مورد تایید قرار گرفته و نـوآوری ان، عارضه یابی زنجیره تامین مبتنی بر مدل سیستم مانا و از مجرای انجام مطالعه موردی است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Design of a supply chain management model for construction project based on viable system model( case study: petrochemical construction project)

نویسندگان [English]

  • ali mohaghar 1
  • Fatemeh Saghafi 2
  • Ebrahim Teimoury 3
  • Jalil Heidary Dahooie 4
  • Abdolkarim sabaee 5

1 Professor of Management, University of Tehran, Iran

2 Associate Professor, Department of Management, University of Tehran, Tehran, Iran

3 Professor of Department of Industrial Engineering, Iran University of Science and Technology ,

4 Associate Professor. faculty of management,.University of Tehran, Iran,

5 PhD student of Operation Management,. faculty of management, .University of Tehran

چکیده [English]

The application of supply chain management within the construction industry presents significant challenges due to the transient nature of construction projects, high levels of customization, low repeatability of activities, absence of a production line, and interdependent relationships among activities. Construction supply chains are intricate systems, where the final performance results from numerous decisions made across multiple independent companies. Interactions among supply chain stakeholders and the unique characteristics of each project create complex phenomena with multiple interconnected elements and variables. The Viable System Model (VSM), rooted in organizational cybernetics, provides a structured approach to addressing complex and unstructured problems. This structured approach allows analysts to gain in-depth insights into the functional issues of the existing system and understand how to modify the system design to adapt to internal and external disruptions.
Methodology
Despite the extensive capabilities of the Viable System Model as a diagnostic tool for assessing organizational structure and achieving viability, a systematic and distinct methodology for its application is lacking. Researchers in VSM often do not employ a specific methodology for systems analysis. In this study, we propose a methodology for applying the VSM as a diagnostic tool for organizations, derived from a review of theoretical foundations and practical requirements of VSM. Building on Jackson's methodology outlined in his book "System Thinking, Creative Holism for Managers," we have developed a methodology by integrating Jackson's approach with case study research. This methodology includes stages such as designing a diagnostic framework, selecting case studies, identifying systems, conducting system diagnosis, and validating the model. We applied this methodology to diagnose the supply chain of an Iranian petrochemical construction project, resulting in the development of a viable system model. The validity of the research methodology and findings was confirmed through expert participation and the application of multiple qualitative criteria.
Results
Following the selection of a case study and the identification of systems, we investigated the existence and function of five subsystems and communication channels within the focal system using a case study approach to gather information and develop the viable system model. Data was collected through semi-structured interviews conducted at various managerial and technical levels within a prominent project-oriented company in Iran's petrochemical industry. These interviews lasted between 45 and 60 minutes each. Data collection methods also included observation and document examination. The research involved a semi-structured interview with 18 individuals to explore complications within each of the five systems. Subsequently, the collected data was adapted to the model's requirements, and findings were extracted through intra-case analysis and coding. This process led to model development and the identification of weaknesses within the construction supply chain from the perspective of the five systems and communication channels, with a focus on achieving viability.
Conclusions
The developed model highlights weaknesses and bottlenecks within the focal system, shedding light on the most significant issues. A critical issue identified in the case study is the evident lack of coherence within System 4 and System 5. The results reveal that the incoherence of System 5, divided between parts of the company at level 0 and the parent company at a higher recursion level outside the focal system, results in defects within the communication channels related to this system, including C14 (Connection of System 4 with System 5), C9 (Algedonic channel), and C16 (Connection of System 5 with the homeostatic loop of Systems 3 and 4). Additionally, System 4, which is jointly managed by a segment of the company and the project management consultant, leads to disruptions in channels related to this system, particularly C13 (Homeostatic loop between Systems 3 and 4), C14 (Communication between System 4 and System 5), and C15 (Homeostat of System 4 with the future environment). Concerning common errors, the dominant error is E5, attributed to the lack of coherence between Systems 4 and 5 and the weak performance of System 2. This error largely stems from inconsistencies between the two operational units responsible for the engineering phase and the construction and installation phase. To achieve viability within the focal system, several measures should be taken, including the establishment of centralized Systems 4 and 5 within the company and strengthening communication channels with incomplete or insufficient capacity. These channels include the connection between System 4 and System 5 (C14), the Algedonic channel (C9), the connection of System 5 with the homeostatic loop of Systems 3 and 4 (C16), the homeostatic loop of System 3 and System 4 (C13), and the homeostat of System 4 with the future environment (C15). A crucial homeostatic link involves the communication and interaction between System 3 and System 4 (C13) to establish dynamic communication between the current project environment and its future. However, the interaction between these two systems is currently conflicting and misaligned due to the lack of coherence within System 4 and differences in functionality between System 3's perspective on the current state and System 4's perspective on the future state. Balancing the emphasis on System 4 and the future with the daily operations of the supply chain's operational units within System 1 is essential to avoid supply chain disruptions or inefficiencies. The lack of coherence within System 4 also affects the performance of other systems, particularly System 5, as well as the stability of System 4 in relation to the future environment. Inadequate information about the future environment can hinder informed decision-making within the system. By addressing these points within the model, the construction project's supply chain can move toward viability and better adapt to changes in the project environment. This research represents one of the limited studies in the implementation of VSM within the construction project environment.

کلیدواژه‌ها [English]

  • Supply chain
  • diagnosis
  • Viable system model
  • construction
  • Project
  1. Adham, K. A., Kasimin, H., Said, M. F., & Igel, B. (2012). Functions and inter-relationships of operating agencies in policy implementation from a viable system perspective. Systemic Practice and Action Research, 25(2), 149–170. https://doi.org/10.1007/s11213-011-9215-7
  2. Aloini, D., Dulmin, R., Mininno, V., & Ponticelli, S. (2012). A conceptual model for construction supply chain management implementation. 28th Annual ARCOM Conference, September, 675–685. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000802
  3. Amade, B., Akpan, E. O. Ubani, E. C., & Amaesh, U. F. (2016). Supply Chain Management and Construction Project Delivery : Constraints to its Application. PM World Journal, V(V), 1–19.
  4. Arantes, A., Ferreira, L. M. D. F., & Costa, A. A. (2015). Is the construction industry aware of supply chain management? The Portuguese contractors’ perspective. Supply Chain Management, 20(4), 404–414. https://doi.org/10.1108/SCM-06-2014-0207
  5. Ashby, W. R. (1956). An Introduction to Cybernetics. Part Two: Variety. London: Methuen.
  6. Azambuja, M., & O’Brien, W. J. (2008). Supply Chain Modeling: Issues and Perspectives. Construction Supply Chain Management Handbook.
  7. Bankvall, L., Bygballe, L. E., Dubois, A., & Jahre, M. (2010). Interdependence in supply chains and projects in construction. Supply Chain Management, 15(5), 385–393. https://doi.org/10.1108/ 13598541011068314
  8. Bartunek, J. M., & Seo, M. G. (2002). Qualitative research can add new meanings to quantitative research. Journal of Organizational Behavior, 23(2), 237–242. https://doi.org/10.1002/job.132
  9. Beer, S. (1979). The heart of enterprise. The Journal of the Operational Research Society, 31(9),861
  10. Beer, S. (1985). Diagnosing the system for organizations. The Journal of the Operational Research Society,37(7),722
  11. Behera, P., Mohanty, R. P., & Prakash, A. (2015). Understanding Construction Supply Chain Management. Production Planning and Control, 26(16), 1332–1350. https://doi.org/10.1080/09537287. 2015.1045953
  12. Bertalanffy, L. Von. (1950). The Theory of Open Systems in Physics and Biology. In Science (Vol. 111, pp. 23–29). American Association for the Advancement of Science. https://doi.org/10.2307/1676073
  13. Boin, A., Kelle, P., & Clay Whybark, D. (2010). Resilient supply chains for extreme situations: Outlining a new field of study. International Journal of Production Economics, 126(1), 1–6. https://doi.org/ 10.1016/j.ijpe.2010.01.020
  14. Bradley, E. H., Curry, L. A., & Devers, K. J. (2007). Qualitative data analysis for health services research: Developing taxonomy, themes, and theory. Health Services Research, 42(4), 1758–1772. https://doi.org/10.1111/j.1475-6773.2006.00684.x
  15. Briscoe, G. H., Dainty, A. R. J., Millett, S. J., & Neale, R. H. (2004). Client-led strategies for construction supply chain improvement. Construction Management and Economics, 22(2), 193–201. https://doi.org/10.1080/0144619042000201394
  16. Cheng, J. C. P., Bjornsson, H., Law, K. H., Sriram, R. D., & Jones, A. (2010). Modeling and monitoring of construction supply chains. In Advanced Engineering Informatics (Vol. 24, Issue 4). https://doi.org/10.1016/j.aei.2010.06.009
  17. Cox, A., & Ireland, P. (2010). Engineering, Construction and Architectural Management Article information. Engineering, Construction and Architectural Management, 9(5/6), 409–418.
  18. Creswell, J., & Poth, C. (2007). Qualitative inquiry and research design: Choosing among five approaches.
  19. Eisenhardt, K. M. (1989). Building theories from case study research. Academy of Management Review, 14(4), 532–550.
  20. Espejo, R, & Reyes, A. (2011). Organizational systems: Managing complexity with the viable system model.https://books.google.com/ books?hl=en&lr=&id=zMaZgw2a7DAC&oi=fnd&pg=PR3&dq=Espejo,+R.,+Reyes,+A.+(2011),+Organizational+system,+managing+complexity+with+viable+system+model,+Springer&ots=-prI2Bo2uK&sig=qEKxfLM556v2lRj7d5yTZv8CsIs
  21. Espejo, Raúl, & Harnden, R. (1989). The viable system model: interpretations and applications of Stafford Beer’s VSM.
  22. Fearne, A., & Fowler, N. (2006). Efficiency versus effectiveness in construction supply chains: the dangers of “lean” thinking in isolation. Supply Chain Management: An International Journal, 11(4), 283–287. https://doi.org/10.1108/13598540610671725
  23. FLORIAN, G. L., & CONSTANGIOARA, A. (2014). The impact of performances in romanian supply chains on organizational performances. Seria Management, 17(2), 265–275.
  24. Gregory, A. J. (2007). Target setting, lean systems and viable systems: A systems perspective on control and performance measurement. Journal of the Operational Research Society, 58(11), 1503–1517. https://doi.org/10.1057/palgrave.jors.2602319
  25. Guba, E. G., Lincoln, Y. S., & others. (1994). Competing paradigms in qualitative research. Handbook of Qualitative Research, 2(163–194), 105.
  26. Hannabuss, S. (1996). Research interviews. New Library World, 97(5), 22–30. https://doi.org/10.1108/03074809610122881
  27. Harwood, S. A. (2009). The changing structural dynamics of the scottish tourism industry examined using stafford beer’s VSM. In Systemic Practice and Action Research (Vol. 22, Issue 4). https://doi.org/10.1007/s11213-009-9129-9
  28. Hatmoko, J. U. D., & Scott, S. (2010). Simulating the impact of supply chain management practice on the performance of medium-sized building projects. Construction Management and Economics, 28(1), 35–49. https://doi.org/10.1080/01446190903365632
  29. Hildbr, S., & Bodhanya, S. (2015). Guidance on applying the viable system model. Kybernetes, 44(2), 186–201. https://doi.org/10.1108/K-01-2014-0017
  30. Humphreys, P., Matthews, J., & Kumaraswamy, M. (2003). Pre‐construction project partnering: from adversarial to collaborative relationships. Supply Chain Management: An International Journal, 8(2), 166–178. https://doi.org/10.1108/13598540310468760
  31. Jackson, M. C. (2003). Systems Thinking – Creative Holism for Managers. In Kybernetes (Vol. 33, Issue 8). https://doi.org/10.1108/ k.2004.06733hae.001
  32. Leonard, A. (2009). The viable system model and its application to complex organizations. Systemic Practice and Action Research, 22(4), 223–233. https://doi.org/10.1007/s11213-009-9126-z
  33. Love, P. E. D., Irani, Z., & Edwards, D. J. (2004). A seamless supply chain management model for construction. Supply Chain Management, 9(1), 43–56. https://doi.org/10.1108/13598540410517 575
  34. Mingers, J. (2011). Soft OR comes of age-but not everywhere! In Omega (Vol. 39, Issue 6, pp. 729–741). Pergamon. https://doi.org/10.1016/j.omega.2011.01.005
  35. O’Brien, W. J., Formoso, C. T., Vrijhoef, R., & London, K. A. (2008). Construction supply chain management handbook. Construction Supply Chain Management Handbook, العدد الحا، 1–507.
  36. O’Brien, W. J., London, K., & Vrijhoef, R. (2002). Construction Supply Chain Modeling : a Research Review and Interdisciplinary Research Agenda. Proceedings IGLC-10, Aug. 2002, Gramado, Brazil, 1–19.
  37. Pan, N.-H., Lin, Y.-Y., & Pan, N.-F. (2010). Enhancing construction project supply chains and performance evaluation methods: a case study of a bridge construction project. Canadian Journal of Civil Engineering, 37(8), 1094–1106. https://doi.org/10.1139/l10-047
  38. Pryke, S. (2009). Construction Supply Chain Management: Concepts and Case Studies. In book. https://doi.org/10.1002/9781444320916
  39. Regaliza, J. C. P. (2015). Quantitative analysis of viable systems model on software projects in the ict sector in castilla y león. Kybernetes, 44(5), 806–822. https://doi.org/10.1108/K-06-2014-0112
  40. Ríos, J. P. (2012). Design and Diagnosis for Sustainable Organizations: The Viable System Method,. In Springer-Verlag Berlin Heidelberg. https://doi.org/10.1017/CBO9781107415324.004
  41. Schwaninger, M. (2006). Intelligent organizations: Powerful models for systemic management. https://books.google.com/books?hl=en&lr =&id=wjWUTyIVSbYC&oi=fnd&pg=PR5&dq=Markus+Schwaninger+(2006)&ots=QSL6LejbMz&sig=_HRlZ8xilBPLpCqGX2bymN4KclY
  42. Schwaninger, Markus. (2004). Methodologies in conflict: Achieving synergies between system dynamics and organizational cybernetics. Systems Research and Behavioral Science, 21(4), 411–431. https://doi.org/10.1002/sres.649
  43. Soe, Y. (2017). Construction supply chain risk management framework for construction projects: case studies in Myanmar. January. http://etheses.bham.ac.uk/7631/
  44. Stommel, M., & Wills, C. (2004). Clinical research: Concepts and principles for advanced practice nurses.
  45. Thunberg, M. (2013a). Towards a Framework for Process Mapping and Performance Measurement in Construction Supply Chains. In Towards a Framework for Process Mapping and Performance Measurement in Construction Supply Chains (Issue 1631). https://doi.org/10.3384/lic.diva-101964
  46. Thunberg, M. (2013b). Towards a Framework for Process Mapping and Performance Measurement in Construction Supply Chains Department of Science and Technology Linköping University Norrköping 2013 Towa (Issue 1631). Linköping Studies in Science and Technology, Thesis No. 1631.
  47. Tserng, H. P., Yin, S. Y. L., & Li, S. (2006). Developing a Resource Supply Chain Planning System for Construction Projects. Journal of Construction Engineering and Management, 132(4), 393–407. https://doi.org/10.1061/(ASCE)0733-9364(2006)132:4(393)
  48. Watts, M. (2009). Collaborative implementation network structures: Cultural tourism implementation in an english seaside context. Systemic Practice and Action Research, 22(4), 293–311. https://doi.org/10.1007/s11213-009-9125-0
  49. Wibowo, M. A., & Sholeh, M. N. (2017). Application of Supply Chain Performance Measurement in Scor Model at Building Project. IPTEK Journal of Proceedings Series, 0(1), 60. https://doi.org/ 10.12962/j23546026.y2017i1.2193
  50. Wiener, N. (1948). Cybernetics or Control and Communication in the Animal and the Machine, (Hermann & Cie Editeurs, Paris, The Technology Press, Cambridge, Mass., John Wiley & Sons Inc., New York, 1948). Cybernetics. Html.
  51. Xue, X., Li, X., Shen, Q., & Wang, Y. (2005). An agent-based framework for supply chain coordination in construction. Automation in Construction, 14(3), 413–430. https://doi.org/10.1016/j.autcon. 2004.08.010
  52. Xue, X., Yu, X., Wang, Y., Shen, Q., & Yu, X. (2007). Coordination mechanisms for construction supply chain management in the Internet environment. International Journal of Project Management, 25(2), 150–157. https://doi.org/10.1016/J.IJPROMAN.2006.09.006
  53. Yin, R.. (2009). Case Study Research - Design and Methods. USA: Sage Publications Inc.
  54. Zheng, X., Hu, B., & Mao, Y. (2011). Applied analysis of a supply chain management model in the construction industry. International Conference on E-Business and E-Government, ICEE2011 - Proceedings, 125–128. https://doi.org/10.1109/ICEBEG.2011. 5881465