نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری رشته مدیریت صنعتی، دانشکده مدیریت، حسابداری و علوم انسانی، دانشگاه آزاد اسلامی، قزوین، ایران

2 استاد گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه شهید بهشتی، تهران، ایران

چکیده

امروزه در واحدهای صنعتی نظارت بر عملکرد تجهیزات توسط اپراتور انجام می‌شود و به‌علت گستردگی محیط عملیاتی و حجم بالای تجهیزات، هماهنگی‌ بین واحدها به‌سختی امکان‌پذیر بوده و صدمات جبران‌ناپذیری در پی دارد. باوجود پیشرفت‌های چشمگیر تکنولوژی در زمینه بازرسی و نظارت، می‌توان این وظیفه را به ابزارهای هوشمند و اینترنت اشیاء سپرد. همچنین، با ظهور فناوری محاسبات «رایانش لبه»، بسیاری از محققان به دلیل مزایای آن، از طراحی‌های مبتنی بر محاسبات لبه‌ای بهره برده‌اند. لذا در این پژوهش مدلی ترکیبی از اینترنت اشیاء و پهپادهای غیرنظامی جهت نظارت هوشمند بر عملکرد تجهیزات صنعتی با رویکرد رایانش لبه ارائه شد که به‌عنوان مطالعه موردی توربین‌های بادی موردبررسی قرار گرفت. در این مدل، عملکرد پهپاد جهت نظارت هوشمند بر توربین‌های بادی در سه مرحله موردبررسی قرار گرفت. 1) فرآیند تشخیص 2) فرآیند تخلیه محاسباتی پهپاد 3) فرآیند محاسبات محلی پهپاد. با توجه به دو هدفه بودن مدل نهایی که ترکیبی از سه مرحله فوق بود، مدل توسط روش‌های ژنتیک با مرتب‌سازی ناچیره و روش محدودیت اپسیلن تقویت‌شده با استفاده از اعداد تصادفی حل شد و روش ژنتیک با مرتب‌سازی ناچیره عملکرد بهتری داشت؛ زیرا در مسائل با ابعاد بزرگ، به دلیل پیچیدگی مسئله، روش محدودیت اپسیلن تقویت‌شده قادر به پاسخگویی در زمان مناسب نبود.
امروزه در واحدهای صنعتی نظارت بر عملکرد تجهیزات توسط اپراتور انجام می‌شود و به‌علت گستردگی محیط عملیاتی و حجم بالای تجهیزات، هماهنگی‌ بین واحدها به‌سختی امکان‌پذیر بوده و صدمات جبران‌ناپذیری در پی دارد. باوجود پیشرفت‌های چشمگیر تکنولوژی در زمینه بازرسی و نظارت، می‌توان این وظیفه را به ابزارهای هوشمند و اینترنت اشیاء سپرد. همچنین، با ظهور فناوری محاسبات «رایانش لبه»، بسیاری از محققان به دلیل مزایای آن، از طراحی‌های مبتنی بر محاسبات لبه‌ای بهره برده‌اند. لذا در این پژوهش مدلی ترکیبی از اینترنت اشیاء و پهپادهای غیرنظامی جهت نظارت هوشمند بر عملکرد تجهیزات صنعتی با رویکرد رایانش لبه ارائه شد که به‌عنوان مطالعه موردی توربین‌های بادی موردبررسی قرار گرفت. در این مدل، عملکرد پهپاد جهت نظارت هوشمند بر توربین‌های بادی در سه مرحله موردبررسی قرار گرفت. 1) فرآیند تشخیص 2) فرآیند تخلیه محاسباتی پهپاد 3) فرآیند محاسبات محلی پهپاد. با توجه به دو هدفه بودن مدل نهایی که ترکیبی از سه مرحله فوق بود، مدل توسط روش‌های ژنتیک با مرتب‌سازی ناچیره و روش محدودیت اپسیلن تقویت‌شده با استفاده از اعداد تصادفی حل شد و روش ژنتیک با مرتب‌سازی ناچیره عملکرد بهتری داشت؛ زیرا در مسائل با ابعاد بزرگ، به دلیل پیچیدگی مسئله، روش محدودیت اپسیلن تقویت‌شده قادر به پاسخگویی در زمان مناسب نبود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Designing an Intelligent Monitoring Model for Industrial Equipment with the Approach of Optimizing Transmission Delay and Data Processing Speed (Case Study: Wind Turbines)

نویسندگان [English]

  • elham aghazadeh 1
  • Akbar Alem Tabriz 2

1 PhD student in Industrial Management, Faculty of Management, Accounting and Human Sciences, Islamic Azad University, Qazvin, Iran

2 Professor, Department of Industrial Management, Faculty of Management and Accounting, Shahid Beheshti University, Tehran, Iran

چکیده [English]

In today's industrial units, operators monitor equipment performance, and the challenging coordination between units in vast operating environments with high volumes of equipment can lead to irreparable damage. Despite considerable technological advancements in inspection and surveillance, this responsibility can be effectively delegated to smart devices and the Internet of Things (IoT). Furthermore, the emergence of "edge computing" technology has prompted researchers to explore edge-based computing designs due to their numerous benefits. This study presents a combined model of IoT and civilian drones for intelligent monitoring of industrial equipment performance, employing an edge computing approach. The model is specifically investigated through a case study involving wind turbines. The model evaluates the performance of drones for intelligent monitoring of wind turbines in three stages: 1) Detection process, 2) UAV computational evacuation process, and 3) UAV local computation process. Given the dual purpose of the final model, which involves a combination of the aforementioned three steps, a genetic method was employed for problem-solving with negligible sorting. The amplified epsilon restriction method, utilizing random numbers, was also considered, but the combination of genetic and negligible sorting methods outperformed it, particularly in large problems where the enhanced epsilon restriction method struggled to provide timely responses due to the inherent complexity of the problem. 
Introduction
Today, in various industries, the productivity and efficiency of equipment contribute to the advancement of production and the profitability of production units. Beyond repair costs, equipment breakdowns also result in the expense of lost opportunities for the production unit. Without a solution to prevent these costs, bankruptcy for production units becomes a real possibility. Therefore, consideration should be given to a solution for the optimal monitoring of equipment. Clearly, swift action is crucial when any equipment is damaged, and such rapid response is unattainable through human effort alone. Despite significant technological advances in inspection and monitoring, this task can be delegated to smart tools and the Internet of Things (IoT). The IoT is regarded as one of the most crucial factors for the prosperity and progress of today's and future industrial businesses. Modernizing equipment is a priority for today's industries to quickly adapt to the evolving market changes and harness existing technologies. Businesses incorporating IoT into their infrastructure experience substantial growth in areas such as security, productivity, and profitability. As the use of industrial IoT increases, productivity levels in industries are naturally expected to rise. The IoT can accumulate massive amounts of information and data, enabling factories and companies to optimize their systems and equipment without being hindered by technological and economic limitations. However, a challenge arises from the substantial volume of data generated by the IoT, which is sent to cloud computing centers for processing. Centralized (cloud) processing results in high communication delays and lowers the data transfer rate between IoT devices and potential users, creating operational challenges in the network. To address this issue, the concept of edge computing has been proposed. Edge computing allows IoT services to process data near their own data sources and data sinks instead of relying on the cloud environment. This approach leads to reduced communication delays and more efficient utilization of computing, storage, and network resources. It also minimizes execution time and energy consumption, proving to be highly beneficial for IoT applications. Consequently, with the advent of "edge computing" technology, many researchers have embraced edge computing-based designs due to its numerous advantages.
Materials and Methods 
In this research, a combined model of the Internet of Things and civilian drones was presented for the intelligent monitoring of industrial equipment, utilizing an edge computing approach. The model was investigated through a case study involving wind turbines. The performance of UAVs for intelligent monitoring of wind turbines was examined in three stages: 1) Detection process, 2) UAV computational evacuation process, and 3) UAV local computing process. Given the dual purpose of the final model, which involved a combination of the aforementioned three steps, the model was addressed using genetic methods with sparse sorting and the enhanced epsilon constraint method employing random numbers. The genetic method with sparse sorting outperformed the enhanced epsilon limit method, particularly in problems with large dimensions. The complexity of the problem made it challenging for the enhanced epsilon constraint method to provide timely responses in such cases.
Results
The findings of this research offer valuable insights for the effective and accurate management and monitoring of industrial equipment across various industrial units, aiming to optimize costs, quality, and inspection time. Additionally, this research can provide guidance in considering regulatory restrictions in equipment placement before constructing an industrial unit. During the equipment arrangement phase, the model presented in this research can be utilized for optimal energy consumption and time management. As the combined model of the Internet of Things and civilian drones for intelligent monitoring of industrial equipment is a novel concept in the literature, there exist numerous opportunities for further development in this field. This may include the application of the model in additional case studies, such as enhancing the intelligent monitoring of power supply systems, fire services, etc. Moreover, there is potential for refining the mentioned model under conditions where drones operate simultaneously without a specific sequence.
Conclusion
Failure to monitor industrial equipment properly can result in substantial financial losses for factories and production units. The improper operation of equipment may lead to complete failure, necessitating the need for replacement. Additionally, increased equipment downtime, quality issues, reduced production speed, safety hazards, and environmental pollution can be consequences of equipment failure, ultimately diminishing the profitability of the production unit. Considering factors such as embargoes, emphasis on domestic production, and self-sufficiency, accurate supervision becomes economically crucial for factories.
Effective management of the proper operation of industrial equipment is a fundamental requirement for every production unit, given that industrial equipment represents a significant investment for the unit. If device maintenance is limited to repairs only after breakdowns occur, production devices will consistently face unexpected halts, preventing production productivity from reaching its predetermined goals. Therefore, designing a framework for the "intelligent monitoring of the performance of all relevant industrial equipment" stands as one of the most crucial actions for any production unit. Depending on the type of equipment, monitoring the performance of industrial equipment may encompass periodic inspections, maintenance and repair planning, and scheduling the optimal operational time for the equipment

کلیدواژه‌ها [English]

  • IoT
  • UAV
  • Edge Computing
  • Intelligent Monitoring
  1. کاظمی، حمید و الهیان، سمانه. (1399). توسعه پهپادهای غیرنظامی در ایران و چالش‌های پیش‌ روی آن. فناوری در مهندسی هوافضا. 2 (23). 45-64.
  2. قضاوی، علیرضا و طباطبا، فروغ السادات. (1399). پهپادها و کاربرد آن‌ها در امنیت عمومی و پلیس هوشمند. نشریه علمی فناوری اطلاعات و ارتباطات انتظامی. 1 (1). 67 -90.
  3. حقیقی، حسن و ساداتی، سید حسین و کریمی، جلال و دهقانی، سید محمدمهدی. (1397). نظارت مداوم چندفروندی به‌وسیله الگوهای پیمایشی پایه باهدف کمینه‌سازی زمان بازبینی. مهندسی هوانوردی. 20 (1). 1-12.
  4. علی پور، میرزامحمد و رجول دزفولی، علی و دانش کهن، حسین. (1388). استفاده از هواپیماهای بدون سرنشین به‌منظور بازرسی خطوط لوله نفت و گاز. دومین کنفرانس لوله و صنایع وابسته. تهران.
  5. قضاوی، نفیسه و رحمانی، دنیا. (1400). ارائه مدلی برای مسیریابی پهپاد برای نظارت بر مناطق آسیب‌دیده پس از بحران. هجدهمین کنفرانس بین‌المللی مهندسی صنایع. 58-83.
  6. Al-Khafaji, H. (2022). Data Collection in IoT Using UAV Based on Multi-Objective Spotted Hyena Optimizer. Sensors. 22(22). pp. 88-96. Doi: 3390/‌s22228896
  7. Alturjman, F., Alturjman, S. (2020). 5G/‌IoT-enabled UAVs for multimedia delivery in industry-oriented applications. Multimedia Tools and Applications, 79 (25), 74-89. DOI:1007/‌s11042-018-6288-7
  8. Athreyasa,G. (2021). Roadway Traffic Analysis Scheme using Unmanned Aerial Vehicle Based on Image Processing and Edge Computing. Turkish Journal of Computer and Mathematics Education (TURCOMAT). 12(3). 122-131. DOI:https:/‌/‌org/‌10.17762/‌turcomat.v12i12.7788
  9. Bahhar ,, Chokri, B., Sofiene, B., Hedi, S. (2021). Real-time intelligent monitoring system based on IoT. 18th International Multi-Conference on Systems, Signals & Devices (SSD). DOI:10.1109/‌SSD52085.2021.9429358
  10. Cao, P., YI, L., Chao, Y., Shengli, X., Kan, X. (2019). MEC-Driven UAV-Enabled Routine Inspection Scheme in Wind Farm Under Wind Influence. Digital Object Identifier, 51(33). 342-361. DOI:1109/‌ICICTA49267.2019.00148
  11. Caro, M., Cano, M. (2019). IoT System Integrating Unmanned Aerial Vehicles and LoRa Technology: A Performance Evaluation Study. Wireless Communications and Mobile Computing. 36(4). 134-151. DOI:1155/‌2019/‌4307925
  12. Chagh, Y., Guennoun Z., Jouihri, Y. (2016). Voice service in 5G network: Towards an edge-computing enhancement of voice over Wi-Fi, in Proc. Telecommun. Signal Process. (TSP). 65(5). 116–120. DOI:10.1109/‌TSP.2016.7760841
  13. Lagkas, T., Bibi, S., Argyriou, V., Panagiotis, G. (2018). UAV IoT Framework Views and Challenges: Towards Protecting Drones as “Things”. Sensors. 18(1). 18-25. https:/‌/‌org/‌10.3390/‌s18114015
  14. Mavrotas, G. (2009). Effective implementation of the e-constraint method in Multi-Objective Mathematical Programming problems. Applied mathematics and computation. 213(3), 455–465. https:/‌/‌org/‌10.1016/‌j.amc.2009.03.037
  15. Na, Z., Mengshu, Z., Jun, W. (2020). UAV-assisted wireless powered Internet of Things: Joint trajectory optimization and resource allocation. Ad Hoc Networks. 98(23). 254-276. https:/‌/‌org/‌10.1016/‌j.adhoc.2019.102052
  16. Pasandideh, S.H.R., Niaki, S.T.A. (2012). Genetic application in a facility location problem with random demand within queuing framework. Journal of Intelligent Manufacturing. 23(3). 651-659. DOI:1007/‌s10845-010-0416-1
  17. Salhaoui, M., Guerrero, Antonio., Arioua, M., Francisco, J., Ortiz, A., Oualkadi, E., Luis Torregrosa, C. (2019). Smart Industrial IoT Monitoring and Control System Based on UAV and Cloud Computing Applied to a Concrete Plant. Sensors. 19(3). 16-30. https:/‌/‌org/‌10.3390/‌s19153316
  18. Wulfovich, S., Rivas, H., Matabuena, P. (2020). Drones in Healthcare. Digital Health. 4(22). 159–168. DOI:1007/‌978-3-319-61446-5_11
  19. Zhao, T., Zhou, S., Guo, X., Zhao, Y., Niu, Z. (2016). Pricing policy and computational resource provisioning for delay-aware mobile edge computing. IEEE/‌CIC Int. Commun. China (ICCC). 1–6. DOI:10.1109/‌ICCChina.2016.7636891
  20. Zhang, K., Mao, Y., Leng, S., Vinel, A., Zhang, Y. (2016). Delay constrained offloading for mobile edge computing in cloud-enabled vehicular networks. Workshop Resilient Netw. Design Modeling (RNDM). 33(2). 288–294. DOI:1109/‌RNDM.2016.7608300