نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی صنایع، دانشکده مهندسی، دانشگاه کاشان، کاشان، ایران

2 دانشجوی کارشناسی ارشد مهندسی صنایع، دانشکده مهندسی ،دانشگاه اصفهان، اصفهان، ایران.

چکیده

پروژه‌ها در طی اجرایشان، با ریسک‌های مختلفی مواجه هستند که می‌تواند تحقق اهداف پروژه را تحت تاثیر خود قرار دهد. بنابراین نیاز به مدیریت ریسک پروژه به‌صورت گسترده‌ای افزایش یافته است. در یک فرآیند سیستماتیک مدیریت ریسک، پس از ارزیابی ریسک، تحلیلگران ریسک با مرحله پاسخ ریسک مواجه می‌شوند، یعنی تصمیم می‌گیرند که در مورد ریسک‌های شناسایی شده چه اقداماتی باید انجام گردد. لذا، طراحی ساختاری مدون برای کاهش ریسک‌ها، نتایج سودمندی برای اتمام موفقیت-آمیز در قالب بودجه، زمان و کیفیت مورد نظر به همراه خواهد داشت. در مطالعات انجام شده، رویکردی جامع که اثرات زمانی و هزینه‌ای ریسک‌ها و استراتژی‌های پاسخ را به‌صورت یکپارچه با توجه به محدودیت‌های پیاده‌سازی استراتژی‌ها بر فعالیت‌ها و نیز کل پروژه مدنظر قرار داده باشد، وجود نداشته که ماهیت عدم قطعیت اکثر پروژه‌ها در دنیای امروزی، لزوم توسعه چنین مدلی را ایجاب می-نماید.
در این مقاله از یک مدل بهینه‌سازی برنامه‌ریزی صفر و یک برای انتخاب مناسب‌ترین استراتژی‌های پاسخ به ریسک پروژه استفاده شده است به نحوی که تحقق اهداف پروژه امکان‌پذیر گردد. در ساختار توسعه داده شده، از مدل‌سازی اثرگذاری ریسک‌ها بر زمان و هزینه انجام فعالیت‌ها و همچنین اثر پیاده-سازی استراتژی‌های پاسخ به ریسک بر کاهش اثرات نامطلوب زمانی و هزینه‌ای ریسک‌ها جهت انتخاب استراتژهای بهینه استفاده شده است. در این رویکرد، زمان فعالیت‌ها با توجه به ماهیت احتمالی ریسک‌ها و همچنین اجرای استراتژی های پاسخ محاسبه شده است. در نهایت جهت ارزیای کارایی مدل، از یک نمونه مثال صنعتی بهره برده شد که نتایج عملکرد مطلوب این ساختار را تایید نمود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Developing an optimization model for prioritizing and selecting project risk response strategies

نویسندگان [English]

  • Ali Namazian 1
  • Somayeh Behboodian 2

1 Assistant professor, Department of Industrial Engineering, College of Engineering, University of Kashan, Kashan, Iran

2 Master's student in Industrial Engineering, Faculty of Engineering, Isfahan University, Isfahan, Iran

چکیده [English]

Projects, during their execution, face various risks that can impact the achievement of project objectives. Therefore, the need for extensive project risk management is widely recognized. In a systematic risk management process, after risk evaluation, risk analysts are confronted with the risk response phase, where they decide on the actions to be taken regarding identified risks. Hence, designing and implementing a structured approach to manage and mitigate risks will yield beneficial outcomes for successful completion within the desired budget, time, and quality. In conducted studies, a comprehensive approach that integrates the time and cost implications of risks and response strategies has been lacking. In this article, an optimization model of zero-one programming has been employed to select the most suitable risk response strategies for the project. In the developed framework, the modeling of the impact of risks on the time and cost of activities, as well as the effect of implementing risk response strategies on reducing the undesirable time and cost implications of risks, has been utilized to select optimal strategies. Finally, to evaluate the efficiency of the model, an industrial case study was utilized, which confirmed the favorable performance of this framework.
Introduction
Every project throughout its lifespan faces opportunities and risks. Risks are uncertain outcomes or consequences of activities or decisions. Therefore, in the project planning process, it is necessary to identify potential risks and then consider appropriate strategies to deal with various risks. In this article, a mathematical programming model is used to evaluate and analyze project risks and to select project risk responses. This model considers the probabilistic nature of risk events and develops an index for evaluating the time and cost impacts of risks, as well as response strategies. The proposed approach can be used to select the best combination of risk response strategies that have the most impact on the time and cost of implementing activities, resulting in completing the project with minimum time and cost.
Literature Review
Different models have been developed for project risk management to enhance success in development projects. These approaches utilize various structures and tools to quantitatively or qualitatively model the selection of risk response strategies for the project. In recent years, due to unexpected events such as financial crises, significant delays have occurred in projects worldwide (Motaleb, 2021). Thus, researchers have attempted to propose various methods to mitigate the effects of risks in recent years.
In the Zonal-based approach, two selected criteria based on risks are plotted on the horizontal and vertical axes, respectively. The two chosen criteria are the weighted probability of immediate project risk and external project risk, and the controllability and specificity of the risks related to the project. Based on the different values of these two criteria, a two-dimensional chart consisting of multiple regions is formed. Different strategies are placed in the corresponding regions. Therefore, suitable strategies can be selected based on the regions formed by the coordinates of the two criterion values.
In the Trade-off-based approach, in order to identify the selected risk for formulating response strategies, exchanges are conducted considering the project's goals, requirements, and managers' mental settings among risk-related criteria such as cost, success probability, percentage of work losses, duration, quality, etc. Then, desirable strategies can be selected from the options based on the efficiency frontier rule.
The approach based on WBS is considered a risk management and project management method. This choice aligns the risk response strategy with the work activities based on WBS analysis of the project. (Guan et al., 2023) developed an integrated approach based on an optimization model and fault tree analysis for budget allocation in response to risk from safety and prevention perspectives.
The optimization approach involves creating a mathematical model to solve the problem of selecting risk response strategies. In general, the objective function aims to minimize the cost of implementing strategies, and the constraints include combinations of strategies, an acceptable level of risk loss, budget for implementing strategies, etc.
Methodology
In this study, a set of work activities is considered, and for each work activity, there may be associated risks that can have an impact. Then, risk response strategies are modeled to determine the most desirable strategy. The zero-one programming technique is used to solve the model. By solving the model, strategies are selected that maximize the estimated impact of risk response after implementation and minimize the cost of implementation. In the proposed model, a set of actions is selected in a way that satisfies the system constraints and optimizes the corresponding objective function. The objective function can be related to time or cost, and the goal of the model is to minimize project completion time or project cost. The model constraints are related to time and cost. The time constraint means that selected strategies should not exceed the specified time frame for their execution and impact on time. The cost constraint means that selected strategies should not exceed the budget and predefined cost in terms of their cost and impact on cost.
 Results
The model presented in this study has an objective function and nine constraints. The purpose of this model is to determine strategies that minimize project completion delay and help achieve and improve project goals. Due to the structure of the modeling, including the objective function and problem constraints, the complexity of the model will change polynomially based on the number of risks, response strategies, and project activities. If simulation-based approaches are used to solve the model, considering the binary nature of project risks and replacing it with the expected value, the complexity of the solution approach will be exponential. Therefore, using the logic of expected value to calculate the duration of activities and project completion time will accelerate the solution process.
Discussion and conclusions
In a systematic project risk management process, after assessing the risks, the implementation of project risk response strategies takes place. The conducted research has generally provided general solutions, and there is no comprehensive model for evaluating project risk reduction measures. In this article, a mathematical optimization model has been developed by considering the risks and response strategies as independent variables for each work activity. Essentially, based on the potential risks that may occur for each work activity, strategies are chosen to minimize project completion delay and reduce the incurred costs, ultimately achieving the project's completion with the least delay and cost. Implementing risk response strategies to mitigate the time and cost impacts of risks requires time and investment. Therefore, selecting these strategies will be justifiable when the time and cost benefits derived from their implementation are greater than the time and cost spent.

کلیدواژه‌ها [English]

  • Risk Event
  • Risk Assessment
  • Risk Response Strategy
  • Optimization Model
  • Time and Cost Impact
  1. اصولی، سید حسین. (1384). راهنمای پیکرهی دانش مدیریت پروژه، تهران، انتشارات مرکز تحقیقات و توسعه مدیریت پروژه شرکت ملی صنایع پتروشیمی.
  2. ذگردی، سید حسام الدین؛ رضایی نیک، ابراهیم؛ نظری، احد؛ هنری چوبر، فریدون. (1390). ارائه مدلی برای کاهش ریسک پروژه های نیروگاهی بر اساس رویکرد بهینه سازی چند هدفه و فرایند تحلیل سلسله مراتبی فازی، مطالعات اقتصاد انرژی، دوره (8)، شماره (31)، صفحات 161-195.
  3. Ahmadi-Javid, A., Fateminia, S. H., & Gemünden, H. G. (2020). A method for risk response planning in project portfolio management. Project Management Journal, 51(1), 77-95. https:/‌/‌doi.org/‌10.1177/‌8756972819866577
  4. Al-Mhdawi, M., O'Connor, A., Qazi, A., & Dacre, N. (2023). A Proposed Fuzzy-based Optimisation Model for Evaluating Construction Projects' Risk Response Strategies. Paper presented at the 14th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP14), Dublin, Ireland. http:/‌/‌hdl.handle.net/‌2262/‌103651
  5. Arabi, S., Eshtehardian, , & Shafiei, I. (2022). Using Bayesian networks for selecting risk-response strategies in construction projects. Journal of Construction Engineering and Management, 148(8), 04022067. https:/‌/‌doi.org/‌10.1061/‌(ASCE)CO.1943-7862.0002310
  6. Baker, S., Ponniah, D., & Smith, S. (1999). Risk response techniques employed currently for major projects. Construction Management & Economics, 17(2), 205-213. https:/‌/‌doi.org/‌10.1080/‌014461999371709
  7. Ben-David, I., Raz, T., 2001. An integrated approach for risk response development in project planning. Journal of the Operational Research Society 52, 14–25. https:/‌/‌doi.org/‌10.1057/‌palgrave.jors.2601029
  8. Boehm, B.W., 1991. “Software Risk Management: Principles and Practices”. IEEE Software, Vol. 8, pp. 32-41. https:/‌/‌doi.org/‌1109/‌52.62930
  9. Chapman, C.B., 1979. Large engineering project risk analysis. IEEE Transactions on Engineering Management 26, 78–86. https:/‌/‌doi.org/‌1109/‌TEM.1979.6447349
  10. Cooper, D. F. (2005). Project risk management guidelines: Managing risk in large projects and complex procurements. Chichester, John Wiley and sons.
  11. Chu, Y., & Wang, Z. (2020). Research on project risk response strategy selection based on grey K-shell algorithm. Grey Systems: Theory and Application, 10(4), 425-438. https:/‌/‌doi.org/‌10.1108/‌GS-10-2019-0043
  12. Datta, S., Mukherjee, S.K., 2001. Developing a risk management matrix for effective project planning—an empirical study. Project Management Journal 32, 45–57. https:/‌/‌doi.org/‌10.1177/‌875697280103200206
  13. Dikmen, I., Birgonul, M. T., Anac, C., Tah, J. H. M., & Aouad, G. (2008). Learning from risks: A tool for post-project risk assessment. Automation in Construction, 18(1), 42-50. https:/‌/‌doi.org/‌10.1016/‌j.autcon.2008.04.008
  14. Fang, C., Marle, F., Xie, M., & Zio, E. (2013). An integrated framework for risk response planning under resource constraints in large engineering projects. IEEE Transactions on Engineering Management, 60(3), 627-639. https:/‌/‌doi.org/‌1109/‌TEM.2013.2242078
  15. Fan, M., Lin, N.-P., Sheu, C., 2008. Choosing a project risk-handling strategy: an analytical model. International Journal of Production Economics 112, 700,713. https:/‌/‌doi.org/‌10.1016/‌j.ijpe.2007.06.006
  16. Fan, Z. P., Li, Y. H., & Zhang, Y. (2015). Generating project risk response strategies based on CBR: A case study. Expert Systems with Applications, 42(6), 2870-2883. https:/‌/‌doi.org/‌10.1016/‌j.eswa.2014.11.034
  17. Ghadir, H., Shayannia, S. A., & Amir Miandargh, M. (2023). A Mathematical modeling of project risk response according to primary, secondary, and residual risks under conditions of uncertainty using the Tabu search algorithm. Journal of Industrial and Systems Engineering, 14(4), 50-66. https:/‌/‌doi.org/‌1001.1.17358272.2022.14.4.3.4
  18. Guan, X., Servranckx, T., & Vanhoucke, M. (2021). An analytical model for budget allocation in risk prevention and risk protection. Computers & Industrial Engineering, 161, 107657. https:/‌/‌doi.org/‌10.1016/‌j.cie.2021.107657
  19. Guan, X., Servranckx, T., & Vanhoucke, M. (2023). Risk response budget allocation based on fault tree analysis and optimization. Annals of Operations Research, 1-42. https:/‌/‌doi.org/‌10.1007/‌s10479-022-05155-8
  20. Haimes, Y., 2005. A Unified Framework for Risk Assessment and Management of Sanitary and Phytosanitary (SPS) Situations. University of Virginia.
  21. Hatefi, M.A., Seyedhoseini,S.M., Noori, S., 2007.Risk response actions selection.The International Journal of Applied Management and Technology 5, 385–408.
  22. Hillson, D. (1999). Developing Effective Risk Response. Proceeding of the 30th annual project management institute, seminar and symposium, Philadelphia, Pennsylvania, USA.
  23. Jin, G., Sperandio, S., & Girard, (2023). Selecting risk response strategies to minimize human errors in a design project for factories of the future. Expert Systems with Applications, 225, 120120. https:/‌/‌doi.org/‌10.1016/‌j.eswa.2023.120120
  24. Karunakaran, P., Abdullah, A. H., Nagapan, S., Sambasivan, M., & Sekar, G. (2020). The Moderating Effect of Project Risk Response-Related Measures on the Relationship between Project-Related Delay Factors and Construction Project Performance. Humanities & Social Sciences Reviews, 8(2), 405-412. https:/‌/‌doi.org/‌10.18510/‌hssr.2020.8246
  25. Kayis, B., Arndt, G., Zhou, M., Amornsawadwatana, S., 2007. A risk mitigation methodology for new product and process design in concurrent engineering projects. Annals of the CIRP 56, 167–170. https:/‌/‌doi.org/‌10.1016/‌j.cirp.2007.05.040
  26. Klein, J.H., 1993. Modelling risk trade-off. The Journal of the Operational Research Society 44, 445–460. https:/‌/‌doi.org/‌10.1057/‌jors.1993.81
  27. Klein, J.H., Powell, P.L., Chapman, C.B., 1994. Project risk analysis based on prototype activities. Journal of the Operational Research Society 45, 749,757. https:/‌/‌doi.org/‌10.1057/‌jors.1994.119
  28. Kujawski, E., 2002. Selection of technical risk responses for efficient contingencies. Systems Engineering 5, 194–212. https:/‌/‌doi.org/‌10.1002/‌sys.10025
  29. Liu, Z., Ding, R., Wang, L., Song, R., & Song, (2022). Making Project Risk Response Decisions through Stakeholders’ Impact on Project Risk Interaction. Paper presented at the Construction Research Congress 2022.
  30. López, C., & Salmeron,J. L. (2012). Risks response strategies for supporting practitioners decision-making in software projects. Procedia Technology,5,437-444. https:/‌/‌doi.org/‌10.1016/‌j.protcy.2012.09.048
  31. Mirsharafeddin, S. (2020). A Bi-Objective Optimization of Portfolio Risk Response Strategies in Oil and Gas Projects. Journal of Research in Science, Engineering and Technology, 8(4), 1-18 https:/‌/‌doi.org/‌10.24200/‌jrset.vol8iss4pp1-18 .
  32. Motaleb, O. (2021). Risk response development in construction projects delay: Multiple case studies from UAE. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 7(3), 05021004. https:/‌/‌doi.org/‌10.1061/‌AJRUA6.0001151
  33. Miller, R., Lessard, D., 2001. Understanding and managing risks in large engineering projects. International Journal of Project Management 19, 437.443. https:/‌/‌doi.org/‌10.1016/‌S0263-7863(01)00045-X
  34. Parsaei Motamed, M., Bamdad, S. A multi-objective optimization approach for selecting risk response actions: considering environmental and secondary risks. OPSEARCH 59, 266–303 (2022). https:/‌/‌doi.org/‌10.1007/‌s12597-021-00541-5
  35. Pipattanapiwong, J., Watanabe, T., 2000. Multi-party risk management process (MRMP) for a construction project financed by an international lender. Proceedings of the 16th Association of Researchers in Construction Management (ARCOM) Annual Conference, Glasgow.
  36. Safaeian, M., Fathollahi-Fard, A. M., Kabirifar, K., Yazdani, M., & Shapouri, M. (2022). Selecting appropriate risk response strategies considering utility function and budget constraints: a case study of a construction company in Iran. Buildings, 12(2), 98.. https:/‌/‌doi.org/‌10.3390/‌buildings12020098
  37. Seyedhoseini, S.M., Noori, S., Hatefi, M.A., 2009. An integrated methodology for assessment and selection of the project risk response actions. Risk Analysis 29, 752–763. https:/‌/‌doi.org/‌10.1111/‌j.1539-6924.2008.01187.x
  38. Wang, L., Song, Y., Ding, R., & Goh, M. (2022). Delay-oriented risk network model for project risk response decisions. Computers & Industrial Engineering, 171, 108370. https:/‌/‌doi.org/‌10.1016/‌j.cie.2022.108370
  39. Zhang, B., Bai, L., & Kang, S. (2022). Risk Response Strategies Selection over the Life Cycle of Project Portfolio. Buildings, 12(12), 2191. https:/‌/‌doi.org/‌10.3390/‌buildings12122191
  40. Zhang, X., Goh, M., Bai, S., & Wang, Z. (2023). Risk response decisions for projects in project portfolios considering objective adjustments and project interdependencies. Kybernetes. https:/‌/‌doi.org/‌10.1108/‌K-09-2022-1344
  41. Zhang, X., Goh, M., Bai, S., Wang, Z., & Wang, Q. (2023). Project Risk Response Decision Making Under Uncertain Project Interdependencies. IEEE Transactions on Engineering Management. https:/‌/‌doi.org/‌1109/‌TEM.2023.3271991
  42. Zhang, Y., & Guan, X. (2021). Budget allocation decisions for project risk response. Kybernetes, 50(12), 3201-3221. https:/‌/‌doi.org/‌10.1108/‌K-03-2020-0188
  43. Zhang, Y., Zuo, F., & Guan, X. (2020). Integrating case-based analysis and fuzzy optimization for selecting project risk response actions. Physica A: Statistical Mechanics and Its Applications, 545, 123578. https:/‌/‌doi.org/‌10.1016/‌j.physa.2019.123578
  44. Zuo, F., Zio, E., & Xu, Y. (2023). Bi-objective optimization of the scheduling of risk-related resources for risk response. Reliability Engineering & System Safety, 237, 109391. https:/‌/‌doi.org/‌10.1016/‌j.ress.2023.109391
  45. Zuo, F., Zio, E., & Yuan, Y. (2022). Risk-Response strategy optimization considering limited risk-related resource allocation and scheduling. Journal of Construction Engineering and Management, 148(11), 04022123. https:/‌/‌doi.org/‌10.1061/‌(ASCE)CO.1943-7862.0002392
  46. Zhang, Y. (2016). Selecting risk response strategies considering project risk interdependence. International Journal of Project Management, 34(5), 819- 830. https:/‌/‌doi.org/‌10.1016/‌j.ijproman.2016.03.001
  47. Zhang, Y., & Fan, Z. P. ,2014. An optimization method for selecting project risk response strategies. International Journal of Project Management, 32(3), 412-422. https:/‌/‌doi.org/‌10.1016/‌j.ijproman.2013.06.006
  48. Asoli, S.H. (1384), Project management body of knowledge guide, Publications of the Center for Research and Development of Project Management of the National Company of Petrochemical Industries, Tehran.
  49. Zegordi, S., Rezaei nik, A., Nazari, A. (1390), Developing a model to reduce the risk of power plant projects based on multi-objective optimization approach and fuzzy hierarchical analysis process. Quarterly Journal of Energy Economics Studies, 31, 161-196