طبقه بندی موجودی با استفاده از بهینه سازی جمعی راه حل های چندهدفه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 عضو هیات علمی دانشگاه ولی عصر رفسنجان

2 دانشجوی کارشناسی ارشد مدیریت بازرگانی دانشگاه ایلام

3 دانشجوی کارشناسی ارشد مدیریت صنعتی دانشگاه ولی عصر رفسنجان

چکیده

طبق هبندى موجودى یکى از تکنی کهاى مهم در حوز هى مدیریت موجودى است. ب هدلیل تنوع و
حجم بالاى اقلام موجودى در یک شرکت، مدیران ناگزیر هستند آنها را طبق هبندى کنند. بنابراین،
بخشى از تلاش پژوهشگران ب همنظور یافتن رو شهایى بوده است که با تعیین تعداد طبقات موجودى،
توان کنترل مدیریت را افزایش دهند. در این مقاله، از الگوریتم بهین هسازى جمعى را هح لهاى چن دهدفه
در سال 2008 ارائه شده است. 4 « سو ویى » و « چى یانگ » استفاده م ىشود. این الگوریتم از سوى
الگوریتم بهین هسازى جمعى را هح لهاى چن دهدفه نوعى الگوریتم تکاملى است که چن دهدف هبودن تابع
آن، به مدیریت این امکان را م ىدهد تا ه مزمان ب هدنبال بهین هسازى اهداف متعددى باشد. حداق لکردن
هزین ههاى نگهدارى و سفار شدهى و حداکث رکردن نرخ گردش موجودى در این مدل مد نظر هستند.
1تایى مورد آزمون قرار دادیم. نتایج پس از نوشتن برنام هى نر مافزارى مدل، آن را روى یک نمون هى 00
نشان م ىدهد که این الگوریتم، م ىتواند هزین ههاى نگهدارى و سفار شدهى را ب هطور قابل ملاحظ هاى
کاهش داده و نرخ گردش موجودى را افزایش دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Inventory classification by multiple objective particles swarm optimization

نویسندگان [English]

  • Mansour Esmaeilzadeh 1
  • Amin Hoseinpoor 2
  • Mohammad Reza Namdar 3
1 Department of Industrial Management, Faculty of Management and Economics Vali-e- Asr University of Rafsanjan
2 Master student Department of Business Administration, Ilam University
3 Bachelor student Department of Industrial Management, Faculty of Management and Economics Vali-e-Asr University of Rafsanjan
چکیده [English]

Inventory classification is one of important techniques in inventory control
context. Managers have to classify inventories because of their variety and
high volume. So a stream of research has been to attempt to find methods
that increase the management control by determining the number of inventory
classes. In this paper the multiple objective particle swarm optimization
algorithm has been used. This algorithm has been presented by Chi-Yang Tsai
and Szu-Wei Yeh in 2008. Multiple objective particle swarm optimization algorithm
is an evolutionary algorithm that enables the management to optimize
multiple objectives simultaneously. Minimizing costs of inventory holding
and ordering and maximizing inventory turnover ratios are this model’s objectives.
We write the software program of this model and then test it on a sample
of 100 items. Results show that this algorithm can decrease costs of holding &
ordering and also increase the inventory turnover ratios significantly.

کلیدواژه‌ها [English]

  • Multi Objective Optimization Problems
  • Multi Objective Particle Swarm Optimization Algorithm
  • Inventory Classification
ABC 􀃉􀁼􀃀􀁝 􀃄􀂬􀁞􀂗 􀂵􀁼􀂻 􀃁􀁻 􀂪􀃌􀂨􀂸􀁥 􀀬􀁿􀃂􀂐􀃀􀂻 􀀬􀃃􀁻􀁙􀂁 􀂶􀃌􀂟􀁚􀂼􀂇􀁙 􀀭􀁻􀁙􀁻􀂀􀃆􀂻 􀀬􀃊􀂋􀃂􀃅􀁼􀂻 􀀭􀁼􀃌􀂼􀁶􀂷􀁙􀁼􀁞􀂟 􀀬􀃊􀃋􀁚􀂨􀂏 [1]
.149-133􀂎􀂏 􀀬1387 􀀬57 􀃉 􀃃􀁿􀁚􀂼􀂋 􀀬􀁤􀃋􀂀􀃋􀁼􀂻 􀁣􀁚􀂠􀂷􀁚􀂘􀂻 􀃉 􀃄􀂻􀁚􀃀􀂸􀂐􀂧 􀀭􀃉􀁻􀃂􀁭􀃂􀂻 􀃉 􀃃􀁿􀁚􀃌􀂠􀂻 􀁼􀃀􀁱
􀃉 􀃃􀁿􀁚􀃌􀂠􀂻 􀁼􀃀􀁱 ABC 􀃉􀁼􀃀􀁝 􀃄􀂬􀁞􀂗 􀂦􀂸􀁦􀁺􀂻 􀃉􀁚􀃅 􀂉􀃁􀁿 􀃉 􀃄􀂈􀃋􀁚􀂬􀂻 􀀬􀁿􀃂􀂐􀃀􀂻 􀀬􀃃􀁻􀁙􀂁 􀂶􀃌􀂟􀁚􀂼􀂇􀁙 􀀭􀂀􀂨􀂠􀁭 􀀬􀃊􀃋􀁚􀂓􀁿 [2]
.22- 1 􀂎􀂏 􀀬1388 􀀬17 􀃉 􀃃􀁿􀁚􀂼􀂋 􀀬􀃊􀁦􀂠􀃀􀂏 􀁤􀃋􀂀􀃋􀁼􀂻 􀁣􀁚􀂠􀂷􀁚􀂘􀂻 􀃊􀂌􀃅􀃁􀂄􀁡 􀀯 􀃊􀂼􀂸􀂟 􀃉 􀃄􀂻􀁚􀃀􀂸􀂐􀂧 􀀭􀃉􀁻􀃂􀁭􀃂􀂻
[3] Weihrich, H., Koontz, H., Management: A Global Perspective, McGraw-hill, 11th
Edition, 2006.
[4] Guvenir, H.A., Erel, E., Multi criteria inventory classification using a genetic
algorithm, European Journal of Operational Research, vol. 105, 1998. pp. 29-37.
[5] Silver, E.A., Pyke, D.F., Peterson, R., Inventory Management and Production
Planning and Scheduling, John Wiley & Sons, New York, Third ed., 1998.
[6] Cohen, M.A., Ernst, R., Multi-item classification and generic inventory stock control
policies, Production and Inventory Management Journal, vol. 29(3), 1988. pp. 6-8.
[7] Partovi, F.Y., Burton, J., Using the analytic hierarchy process for ABC analysis,
International Journal of Productions Management, vol. 13(9), 1993. pp. 29-44.
[8] Flores, B.E., Whybark, D.C., Implementing multiple criteria ABC analysis, Journal
of Opration Management, vol. 7(1), 1987. pp. 79-84.
[9] Partovi, F.Y., Anandarajan, M., Classification inventory using an artificial neural
network approach, Computer & industrial Engineering, vol. 41, 2005. pp. 389-404.
[10] Kennedy, J., Eberhart R.C., Particle swarm optimization. In: Proceedings of the
IEEE conference on neural networks, Perth, Australia, 1995. pp. 1942–8.
[11] Eberhart, R.C., Kennedy, J., A new optimizer using particle swarm theory, in:
Proceedings of the Sixth International Symposium on Micro Machine and Human
Science, IEEE Press, Piscataway, NJ, 1995. pp. 39–43.
[12] Eberhart, R.C., Shi, Y., Computational Intelligence: Concepts to Implementations,
Morgan Kaufmann, 2003.
[13] Zhu, H., et al., Particle Swarm Optimization (PSO) for the constrained portfolio
optimization problem, Expert Systems with Applications, 2011,
doi:10.1016/j.eswa.2011.02.075.
[14] Omkar, S.N., et al., Quantum behaved Particle Swarm Optimization (QPSO) for
multi objective design optimization of composite structures, Expert Systems with
Applications, vol. 36, 2009. pp. 11312–22.
[15] Tsai, C.Y., Yah, S.W., A multiple objective particle swarm optimization approach
for inventory classification, Int. J. Production Economics, vol. 114, 2008. pp. 656–66.
[16] Feng, Y., Zheng, B., Li. Z., Exploratory study of sorting particle swarm optimizer
for multi objective design optimization, Mathematical and Computer Modelling, vol.
52, 2010. pp. 1966-75.
[17] Li, X., et al., A nondominated sorting particle swarm optimizer for multi objective
optimization, in: Proceedings of the Genetic and Evolutionary Computation, Springer,
2003. pp. 37–48.
طبق هبندی موجودی با استفاده از بهین هسازی جمعی را هح لهای چندهدفه 55
[18] Raquel, C., Naval, P. Jr., An effective use of crowding distance in multi objective
particle swarm optimization, in: Proceedings of the Conference on Genetic and
Evolutionary Computation, ACM Press, New York, NY, USA, 2005. pp. 257–264.
[19] Fieldsend, J., Singh, S., A multi-objective algorithm based upon particle swarm
optimization, an efficient data structure and turbulence, in: Proceedings of The UK
Workshop on Computational Intelligence, UK, 2002. pp. 34–44.
[20] Xiaohui, H., Eberhart, R., Multi objective optimization using dynamic
neighborhood particle swarm optimization, in: Proceedings of the Congress on
Evolutionary Computation, vol. 2, 2002. pp. 1677–81.
[21] Pulido, G., Coello, C., Using clustering techniques to improve the performance of a
multi-objective particle swarm optimizer, in: Proceedings of the Genetic and
Evolutionary Computation Conference, Springer, 2004. pp. 225–37.
[22] Liu, D., et al., A multi objective memetic algorithm based on particle swarm
optimization, IEEE Transactions on Systems, Man and Cybernetics, Part B 37 (1), 2007.
pp. 42–50.
[23] Liu, D., et al., On solving multi objective bin packing problems using evolutionary
particle swarm optimization, European Journal of Operational Research, 2008. pp. 357–
82.
[24] Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley, Reading, MA, 1989.
[25] Fogel, L.J., Marsh, A.J., Walsh, M.J., Artificial Intelligence through Simulated
Evolution, Wiley & Sons, New York, 1966.
[26] Reynolds, C.W., Flocks, herds and schools: a distributed behavioral model,
Comput, Graphics, vol. 21 (4), 1987. pp. 25–34.
[27] Heppner, F., Grenander, U., A stochastic nonlinear model for coordinated bird
flocks, in: S. Krasner (Ed.), The Ubiquity of Chaos, AAAS Publications, Washington,
DC, 1990.
[28] Wilson, E.O., Sociobiology: The New Synthesis, Belknap Press, Cambridge, MA,
1975.
[29] Suganthan, P.N., Particle swarm optimizer with neighborhood operator. In:
Proceedings of the 1999 congress of evolutionary computation, vol. 3. IEEE Press,
1999. pp. 1958–62.
[30] Shi, Y., Eberhart, R., Parameter selection in particle swarm optimization, in:
Proceedings of Evolutionary Programming, 1998. pp. 591–600.
[31] Alatas, B., Akin, E., Ozer, A.B., Chaos embedded particle swarm optimization
algorithms, Chaos, Solitons and Fractals, vol. 40, 2009. pp. 1715–34.
[32] Shi, Y., Eberhart, R.C., A modified particle swarm optimizer, IEEE
IntConfComputIntell, 1998. pp. 69–73.
[33] Shi, Y., Eberhart, R.C., Empirical study of particle swarm optimization. In:
Proceedings of the 1999 IEEE congress on evolutionary computation, Piscataway (NJ):
IEEE Press, 1999. pp. 1945–50.
[34] Zheng, Y.L., etal., On the convergence analysis and parameter selection in particle
swarm optimization, In: Proceedings of the 2003 IEEE international conference on
56 مطالعات مدیریت صنعتی، سال یازدهم، شماره 30 ، پاییز 1392
machine learning and cybernetics, Piscataway (NJ): IEEE Press, 2003. pp. 1802–7.
[35] Zheng, Y.L., et al., Empirical study of particle swarm optimizer with an increasing
inertia weight, In: Proceedings of the 2003 IEEE congress on evolutionary computation,
Piscataway (NJ): IEEE Press, 2003. pp. 221–6.
[36] Jiao, B., et al., A dynamic inertia weight particle swarm optimization algorithm,
Chaos, Solitons& Fractals, vol. 37(3), 2008. pp. 698–705.
[37] Zhang, L., Yu, H., Hu, S., A new approach to improve particle swarm optimization,
GECCO 2003, LNCS, vol. 2723, 2003. pp. 134–9.
[38] Eberhart, E., Shi, Y., Tracking and optimizing dynamic systems with particle
swarms. In: Proceedings of the 2001 IEEE congress on evolutionary computation,
Piscataway (NJ): IEEE Press, 2001. pp. 94–100.
[39] Park, J.B., et al., An improved particle swarm optimization for economic dispatch
with valve-point effect, Int J Innov Energy System Power, vol. 1(1), 2006. pp. 1–7.
[40] Jiang, C., Etorre, B.A., Hybrid method of chaotic particle swarm optimization and
linear interior for reactive power optimization, Math Compute Simul, vol. 68, 2005. pp.
57–65.
[41] Ratnaweera, A., Halgamure, S.K., Watson, H.C., Self-organizing hierarchical
particle swarm optimizer with time-varying acceleration coefficients, IEEE Trans Evol
Compute, vol. 8 , 2004. pp. 240–55.
[42] Carlisle, A., Dozier, G., An off the-Shelf PSO, In: The particle swarm optimization
workshop, 2001. pp. 1–6.
[43] Coelho, L.S., Mariani, V.C., A novel chaotic particle swarm optimization approach
using He’non map and implicit filtering local search for economic load dispatch, Chaos,
Solitons& Fractals, vol. 39(2), 2009. pp. 510–8.
[44] Chuanwen, J., Bompard, E.A., Self-adaptive chaotic particle swarm algorithm for
short term hydroelectric system scheduling in deregulated environment, Energy
Converse Manage, vol. 46, 2005. pp. 2689–96.
[45] Chakravarty, A.K., Multi-item inventory grouping whit dependent set-up cost and
group overhead cost, Engineering Cost and Production Economics, 1986. pp. 13-23.
􀁬􀃋􀁚􀁦􀂿 􀃉 􀃄􀂈􀃋􀁚􀂬􀂻 􀃉􀁙􀂀􀁝 􀁼􀃋􀁼􀁭 􀃊􀁦􀂧􀁚􀃌􀃅􀁿 􀃉 􀃄􀁗􀁙􀁿􀁙 􀀬􀁿􀃂􀂐􀃀􀂻 􀀬􀃃􀁻􀁙􀂁 􀂶􀃌􀂟􀁚􀂼􀂇􀁙 􀀭􀁼􀃌􀂼􀁶􀂷􀁙􀁼􀁞􀂟 􀀬􀃊􀃋􀁚􀂨􀂏 [46]
􀀬(􀁚􀁢􀃋􀁚􀂇 􀁤􀂯􀂀􀂋 :􀃉􀁻􀁿􀃂􀂻 􀃉 􀃄􀂠􀂷􀁚􀂘􀂻) 􀃉􀁻􀃂􀁭􀃂􀂻 􀃉 􀃃􀁿􀁚􀃌􀂠􀂻 􀁼􀃀􀁱 ABC 􀃉􀁼􀃀􀁝 􀃄􀂬􀁞􀂗 􀃉􀁚􀃅 􀂵􀁼􀂻 􀃉􀂀􀃌􀂳􀁿􀁚􀂯 􀃄􀁝
.224- 207􀂎􀂏 􀀬1390 􀃃􀁚􀂻 􀂀􀃌􀁥 􀀬47-2 􀃉 􀃃􀁿􀁚􀂼􀂋 􀂺􀃅􀁼􀁮􀃅 􀂵􀁚􀂇 􀀬􀁼􀃅􀁚􀂋 􀃃􀁚􀂴􀂌􀂿􀁙􀁻 􀃊􀂌􀃅􀃁􀂄􀁡 􀀯 􀃊􀂼􀂸􀂟 􀃉 􀃄􀂻􀁚􀃀􀃅􀁚􀂻 􀃁􀁻