اندازه گیرى چابکى زنجیره ی تأمین با استفاده از پایگاه قوانین فازی و شاخص چابکی فازی در صنعت الکترونیک (مورد مطالعه: شرکت پیشرانه ى ساری)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد مدیریت صنعتی- آموزش عالی ادیب مازندران ، ساری

2 استادیار و عضو هیات علمی گروه مدیریت صنعتی دانشگاه یزد

چکیده

براى دستیابى به حاشیه ى رقابتى در محیط تجارى به سرعت در حال تغییر ، شرکت ها باید طورى
با تأمین کنندگان و مشتریان در عملیات خط جریان منطبق شوند که براى دستیابى به سطحى از
چابکى مأوراى انتظار نایل شوند. در نتیجه، زنجیره هاى تأمین چابک، ابزار برجسته ى رقابتى هستند
که مى توانند در این راه کمک شایانى کنند. به سبب ابهام ارزیابى چابکى، بیشتر اندازه گیرى ها به طور
ذهنى و با استفاده از عبارات زبان شناختى یا زبانى توصیف مى شوند. در این تحقیق ابعاد مختلف
چابکى معرفى شده و چگونگى دستیابى شرکت پیشرانه به عنوان مطالعه اى موردى به چابکى در
زنجیره ى تأمین مطالعه و بررسى مى شود. نوآورى این تحقیق استفاده ى هم زمان از رویکرد پایگاه
قوانین فازى و شاخص چابکى فازى است که براى نخستین بار در چنین تحقیقاتى صورت گرفته است.
در نهایت پیشنهادهایى براى ارتقاى سطح چابکى زنجیرهى تأمین شرکت مورد نظر و براى آینده
ارائه مى شود.

کلیدواژه‌ها


عنوان مقاله [English]

Measuring supply chain agility using fuzzy rule base and fuzzy agility index in the electronics industry (case study: PISHRANEH Company, Sari, Iran)

نویسندگان [English]

  • Hani Ghasemi Sahebi 1
  • Mahmoud Zanjirchi 2
1 Master of Science ( M.Sc.) of Industrial Management, Higher Education institute of Adib Mazandaran, Sari
2 Assistant Professor and member of the faculty of the Department of Industrial Management of Yazd University, Yazd
چکیده [English]

To achieve a competitive edge in the rapidly changing business environment,
companies must align with suppliers and customers to streamline
operations, as well as working together to achieve a level of agility beyond
individual companies. Consequently, agile supply chains are the dominant
competitive vehicles. Due to the ambiguity of agility assessment, most
measures are described subjectively using linguistic terms. In this research,
it is identified different dimensions of the agility. It is studied how
the PISHRANEH Company accesses the agility in its supply chain as a
case study. The innovation of this paper is the simultaneous use of Fuzzy
rule-based and the Fuzzy agility index approaches which it is applied for
the first time in such articles. Finally, it is represented some suggestions for
the progress of agility level of the supply chain of the company and some
for the future.

کلیدواژه‌ها [English]

  • Agility
  • Fuzzy Logic
  • Agile Supply Chain
  • Fuzzy rule-based approach
  • Fuzzy Agility Index (FAI)
􀁾􀁹􀁎􀂻 􀃁 􀂞􀁝􀁚􀃀􀂻
􀃉􀂀􀃌􀂳 􀃃􀂁􀁙􀁼􀂿􀁙 􀃉􀁙􀂀􀁝 􀃊􀂋􀃁􀁿 􀃉􀃄􀁗􀁙􀁿􀁙 􀀬􀁻􀁙􀁻􀂀􀃆􀂻 􀀬􀃊􀃋􀁚􀂇􀁚􀃋 􀃁 􀂺􀃋􀂀􀂻 􀀬􀂊􀃋􀃁􀁿􀁻 􀀭􀃊􀂸􀂟 􀀬􀂀􀂬􀁶􀂻 􀀭􀁼􀂼􀁵􀁙 􀀬􀁻􀁙􀂄􀂿􀂀􀂨􀂠􀁭 .1
􀀬􀃉􀂁􀁚􀂧 􀂪􀂘􀃀􀂻 􀃁 􀃊􀂈􀃋􀂀􀁥􀁚􀂻 􀁻􀂀􀂰􀃋􀃁􀁿 􀀬􀂥􀁙􀂀􀂳􀃉 􀁿􀃂􀁘􀁥 􀁜􀃌􀂯􀂀􀁥 􀂁􀁙 􀃃􀁻􀁚􀂨􀁦􀂇􀁙 􀁚􀁝 􀂾􀃌􀂻􀁐􀁥 􀃉 􀃃􀂀􀃌􀁮􀂿􀂁 􀃊􀂰􀁝􀁚􀁱
.145-169 􀂍 􀀬1389 􀀬54 􀃉􀃃􀁿􀁚􀂼􀂋 􀀬􀃊􀂿􀁚􀂳􀁿􀂁􀁚􀁝 􀃉􀃄􀂻􀁚􀃀􀂌􀃅􀃁􀂄􀁡 􀃉􀃄􀂻􀁚􀃀􀂸􀂐􀂧
􀃉􀃄􀂻􀁚􀃀􀂌􀃅􀃁􀂄􀁡 􀀬 􀂾􀃌􀂻􀁐􀁥 􀃉􀃃􀂀􀃌􀁮􀂿􀂁 􀁿􀁻 􀃊􀂰􀁝􀁚􀁱 􀂊􀁮􀃀􀂇 􀃁 􀃊􀁝􀁚􀃋􀂁􀁿􀁙 􀀬 􀂺􀃋􀂀􀂻 􀀬􀂊􀃋􀃁􀁿􀁻 􀃁 􀁼􀂼􀁵􀁙 􀀬􀁻􀁙􀂄􀂿􀂀􀂨􀂠􀁭 .2
.39-62􀂍 􀀬1388 􀀬(36􀃊􀁡􀁚􀃌􀁡) 2􀃉􀃃􀁿􀁚􀂼􀂋 􀀬􀂺􀃆􀂿 􀂵􀁚􀂇 􀀬􀃊􀃋􀁙􀂀􀁭􀁙 􀁤􀃋􀂀􀃋􀁼􀂻
􀃁 􀁚􀃅􀃃􀁻􀁙􀁻 􀃊􀂌􀂋􀃂􀁡 􀂶􀃌􀂸􀁶􀁥 􀀬􀂺􀂋􀁚􀃅 􀀬􀂹􀁙􀂀􀂻􀃂􀂰􀃌􀂿 􀃁 􀁻􀁚􀃅􀂀􀂧 􀀬􀃊􀂨􀂘􀂷 􀃃􀁻􀁙􀂁􀂾􀃌􀂈􀁵 􀀭􀁚􀂓􀂀􀂻􀃔􀂣 􀀬􀃂􀂸􀃅􀁚􀂌􀂿􀁚􀃆􀁭 .3
.1387 􀀬􀁣􀁚􀂬􀃌􀂬􀁶􀁥 􀃁 􀂹􀃂􀂸􀂟 􀁼􀁵􀁙􀃁 􀃊􀂻􀃔􀂇􀁙 􀁻􀁙􀂁􀁍 􀃃􀁚􀂴􀂌􀂿􀁙􀁻 􀀬􀂽􀁍 􀃉􀁚􀃅􀁻􀂀􀁝􀁿􀁚􀂯
.1379 􀀬􀂽􀁙􀂀􀃆􀁥 􀀬􀃊􀂻􀃔􀂇􀁙 􀁻􀁙􀂁􀁍 􀃃􀁚􀂴􀂌􀂿􀁙􀁻 􀃊􀂼􀂸􀂟 􀁣􀁙􀁿􀁚􀂌􀁦􀂿􀁙 􀂂􀂯􀂀􀂻 􀀬􀁤􀃋􀂀􀃋􀁼􀂻 􀁿􀁻 􀂪􀃌􀂬􀁶􀁥 􀂉􀃁􀁿 􀀬􀁚􀂓􀂀􀂻􀃔􀂣 􀀬􀃊􀂯􀁚􀁹 .4
􀃉􀁚􀃅 􀂽􀁚􀂻􀂁􀁚􀂇 􀃊􀂰􀁝􀁚􀁱 􀃊􀂇􀁿􀂀􀁝 􀀬􀃂􀂷􀁿􀁚􀂯 􀀬􀂆􀂯􀃂􀂷 􀃁 􀃊􀂸􀂟 􀀬􀂀􀂬􀁶􀂻 􀀭􀁼􀂼􀁵􀁙 􀀬􀁻􀁙􀂄􀂿􀂀􀂨􀂠􀁭 􀀭􀁚􀂓􀂀􀂻􀃔􀂣 􀀬􀁚􀂼􀃌􀂇􀂉􀃂􀁹 .5
􀀬􀃊􀂇􀁼􀃀􀃆􀂻 􀂹􀃂􀂸􀂟 􀃊􀂸􀂸􀂼􀂷􀁙􀂾􀃌􀁝 􀃉􀃄 􀃋􀂀􀂌􀂿 􀀬􀃉􀂁􀁚􀂧 􀂪􀂘􀃀􀂻 􀂁􀁙 􀃃􀁻􀁚􀂨􀁦􀂇􀁙 􀁚􀁝 􀂽􀁙􀂀􀃋􀁙 􀂮􀃌􀂿􀃁􀂀􀁦􀂰􀂷􀁙 􀁤􀂠􀃀􀂏 􀁿􀁻 􀃉􀁼􀃌􀂷􀃂􀁥
.􀂽􀁙􀂀􀃋􀁙 􀁤􀂠􀃀􀂏􀃁 􀂺􀂸􀂟 􀃃􀁚􀂴􀂌􀂿􀁙􀁻 􀀬7- 15􀂍 􀀬1385 􀀬17􀁼􀂸􀁭 􀀬5 􀃉􀃃􀁿􀁚􀂼􀂋
􀁚􀁝 􀂽􀁙􀂀􀃋􀁙 􀂮􀃌􀂿􀃁􀂀􀁦􀂰􀂷􀁙 􀁤􀂠􀃀􀂏 􀁿􀁻 􀃉􀁼􀃌􀂷􀃂􀁥 􀃉􀁚􀃅􀂽 􀁚􀂻􀂁􀁚􀂇 􀃊􀂰􀁝􀁚􀁱 􀃉􀂀􀃌􀂳􀃃􀂁􀁙􀁼􀂿􀁙 􀀬􀁚􀂓􀂀􀂻􀃔􀂣 􀀬􀁚􀂼􀃌􀂇􀂉􀃂􀁹 .6
.1381 􀀬􀂽􀁙􀂀􀃆􀁥 􀃃􀁚􀂴􀂌􀂿􀁙􀁻 􀀬􀁼􀂋􀁿􀁙 􀃊􀂇􀁚􀃀􀂋􀁿􀁚􀂯 􀃉 􀃄􀂻􀁚􀂿 􀂽􀁚􀃋􀁚􀁡 􀀬􀃉􀂁􀁚􀂧 􀂪􀂘􀃀􀂻 􀂁􀁙 􀃃􀁻􀁚􀂨􀁦􀂇􀁙
􀁣􀁙􀁿􀁚􀂌􀁦􀂿􀁙 􀀬MATLAB􀂁􀁙 􀃃􀁻􀁚􀂨􀁦􀂇􀁙 􀁚􀁝 􀃉􀂁􀁚􀂧 􀂪􀂘􀃀􀂻 􀂀􀁝 􀃉􀁙􀃄􀂻􀁼􀂬􀂻 􀀬􀁚􀃀􀃌􀂇 􀀬􀁚􀃌􀂿􀁼􀃌􀂠􀂇 􀃁 􀂽􀃁􀁼􀃋􀂀􀂧 􀀬􀁚􀃌􀂿􀃊􀂿􀁚􀁞􀂠􀂋 .7
.1388 􀀬􀂽􀁙􀂀􀃆􀁥 􀀬􀂽􀁙􀂀􀃌􀂿􀁚􀁹
􀂾􀃌􀂻􀃁􀁻 􀀬􀂞􀂿􀁙􀃂􀂻 􀃁 􀁣􀁚􀂻􀁙􀂂􀂷􀁙 􀀬􀂺􀃌􀃅􀁚􀂨􀂻 􀀬􀂮􀁝􀁚􀁱 􀂾􀃌􀂻􀁐􀁥 􀃉􀃃􀂀􀃌􀁮􀂿􀂁 􀀬􀂾􀂈􀁶􀂻 􀀬􀃉􀁼􀂼􀁶􀂻 􀃁 􀁚􀂓􀂀􀂻􀃔􀂣 􀀬􀃉􀂁􀁿􀁻􀃂􀂳 .8
.1385 􀀬􀂾􀃌􀂻􀁐􀁥 􀃉􀃃􀂀􀃌􀁮􀂿􀂁 􀃁 􀂮􀃌􀁦􀂈􀁮􀂷 􀂆􀂿􀁙􀂀􀂨􀃀􀂯
􀁤􀃋􀂀􀃋􀁼􀂻 􀂽􀁚􀂻􀂁􀁚􀂇 􀁣􀁙􀁿􀁚􀂌􀁦􀂿􀁙 􀀬􀃊􀂿􀂂􀁭 􀂾􀃋􀂀􀂈􀂿 :􀂺􀁭􀂀􀁦􀂻 􀀬􀃃􀁼􀃀􀃀􀂯􀂥􀂀􀂐􀂻 􀂀􀂗􀁚􀁹 􀁤􀃋􀁚􀂓􀁿 􀃉􀂀􀃌􀂳􀃃􀂁􀁙􀁼􀂿􀁙 􀀬􀁛􀁚􀁝 􀀬􀂂􀃌􀃅 .9
.1381(1992) :􀂽􀁙􀂀􀃆􀁥 􀀬􀃊􀁦􀂠􀃀􀂏
10. Delgado, M., Verdegay, J.L. & Vila, v. (1993). Linguistic decision making
models, Int. J. Intel. Systems, 7, 479–492.
11. Fernández, A., del Jesus, M. J., Herrera F. (2010). Information Sciences, 180(8),
1268-1291.
12. Guesgen H, Albrecht J.& Grundner S. (2000). Erosion Modeling in a Raster-
Based GIS with Fuzzy Logic. In Proceedings FLAIRS-2000, American
Association for Artificial Intelligence, Orlando, Florida.
13. Jain, V., Benyoucef, L. & Deshmukh, S.G. (2008). A new approach for
evaluating agility in supply chains using Fuzzy Association Rules Mining,
Engineering Applications of Artificial Intelligence, 21, 367–385.
14. Lin, C.-T., Chiu, H. & Chu, P.-Y. (2006). “Agility index in the supply chain”,
International Journal of Production Economics, 100(2), 285–299.
15. Sharifi, H., Zhang, Z. (1999). A methodology for achieving agility in
76 مطالعات مدیریت صنعتی، سال یازدهم، شماره 30 ، پاییز 1392
manufacturing organization: An introduction, International Journal of
Production Economics, 62, 7–22.
16. Sharifi, H., Ismail, H.S. & Reid, I. (2006). Achieving agility in supply chain
through simultaneous “design of” and “design for” supply chain, Journal of
Manufacturing Technology Management, 17(8), 1078-1098.
17. Sharp, J.M., Irani, Z. & Desai, S. (1999). Working towards agile manufacturing
in the UK industry, International Journal of Production Economics, 62 (1 & 2),
155–169.
18. Stevens, G. (1989). Integrating the supply chain, International Journal of
Physical Distribution and Materials Management, 19 (1), 3–8.
19. Vonderembse, M.A., Uppal, M., Huang, S.H., Dismukes, J.P. (2006). Designing
supply chains: towards theory development. International Journal of
Production Economics, 100 (2), 223–238.
20. Yauch, C.A. (2011). Measuring agility as a performance outcome, Journal of
Manufacturing Technology Management, 22(3), 384-404.
21. Zadeh, L. A. (1965). “Fuzzy sets”, Information and Control, 8, 338􀌽353.
22. Zadeh, L.A. (1975). The concept of linguistic variable and its application to
approximate reasoning, Inform. Sci. 8,199–249; 8, 310–357; 9, 43–80.