مدلی دو هدفه جهت مکانیابی تسهیلات در زنجیره تأمین سبز

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه علوم و تحقیقات

2 استادیار علوم و تحقیقات

چکیده

نگرانی‌های محیطی موجب جلب توجه محققان به مطالعه در حوزه رنجیره تأمین سبز شده است. امروزه سازمان‌ها دولتی و غیردولتی دریافته‌اند که مدیریت محیطی یک موضوع استراتژیک کلیدی است که منافع زیادی را در بردارد. از این رو سعی دارند علاوه بر توجه داشتن به فرآیندهای داخل سازمان با توجه به عوامل بیرونی، مانند اثرات محیطی، مقبولیت خود را نزد مشتریان افزایش داده و سهم بیشتری از بازاررا کسب نمایند. در این پژوهش، یک مدل عدد صحیح مختلط دو هدفه برای شناسایی مکان بهینه احداث کارخانه‌ها و مراکز جداسازی در یک زنجیره تأمین سبز توسعه داده شده است. این پژوهش نقش قابلیت اطمینان تسهیلات و وسایل نقلیه را در برقراری ارتباط مؤثر در زنجیره تأمین را مد نظر قرار داده است. توابع هدف مدل پیشنهادی شامل کمینه سازی هزینه‌‌های کل و کمینه سازی تصاعد گاز دی‌اکسید کربن هستند. با استفاده از روش برنامه ریزی تصادفی (سناریو) برای بررسی عدم قطعیت استفاده شده و پس از خطی‌سازی قسمتهای غیرخطی، برای حل مدل دو هدفه ریاضی از روش چندهدفه معیار جامع استفاده شده است. کارایی مدل پیشنهادی با استفاده از داده‌های یک مثال واقعی نشان داده شده است.

کلیدواژه‌ها


عنوان مقاله [English]

A bi-objective facility location model for green supply chain network

نویسندگان [English]

  • hadis drikvand 1
  • seyyed mohammad hajimolana 2
2 science and reseach university
چکیده [English]

Environmental concerns have spurred an interest in studying green supply chain. Nowadays, governmental and non-governmental organizations consider environmental management as a strategic requirement having numerous benefits. Therefore, they effort to increase customers' satisfactory and market share considering external factors like environmental consequences in addition to internal factors. In this paper, a bi-objective mixed integer programming model is developed to identify the optimal location for manufacturers and disassembly sites in a green supply chain network design. This paper addresses the role of the reliability of facilities and vehicles to ensure effective stream among supply chain network, the objective functions are defined as total cost minimization, and total co2 emissions minimization. Besides, uncertainties on the network design are investigated through two-stage stochastic programming. with respect to the fact that the model is non-linear and bi-objective, at first, an approach is presented to linearize it and then the proposed bi-objective mathematical model is solved as a single-objective one by compromise programming method. The effectiveness of the proposed model is demonstrated by using of a numerical example derived from a real case.

کلیدواژه‌ها [English]

  • Green supply chain
  • Stochastic programming
  • Compromise optimization method
  • Location
انصاری، ایمان، صادقی‌مقدم، محمدرضا.(1393). شناسایی، تعیین روابط و سطح‌بندی محرک‌های مدیریت زنجیره تأمین سبز با رویکرد مدل‌سازی تفسیری ساختاری. فصلنامه علمی پژوهشی مطالعات مدیریت صنعتی. سال دوازدهم. شماره 35. صص 150-123.

مروتی شریف‌آبادی، علی، نمک‌شناس جهرمی، نرگس، ضیایی بیده، علیرضا.(1393). بررسی ابعاد نوآوری سبز برعملکرد سازمان.  فصلنامه علمی پژوهشی مطالعات مدیریت صنعتی. سال دوازدهم. شماره 33. صص 42-25.

 

Ala-harja H., & Helo P.(2014).Green supply chain decisions – Case-based performance analysis from the food industry.Transportation Research Part E, 69, ,97–107.

Banerjee S., & Roy T.K. (2001). Linear equation and systems in fuzzy environment. Journal of mathematics and computer Science, 15, 23–31.

Chibeles-Martins N., Pinto-Varela T., Barbosa-Povoa A. P., & Novais A.Q. (2015). A multi-objective meta-heuristic approach for the design and planning of green supply chains – MBSA. Expert Systems with Applications.

Coskun S., Ozgur L., Polat O., & Gungor A. (2016). A model proposal for green supply chain network design based on consumer segmentation. Journal of Cleaner Production, 110, 149-157.

Demirel N. Ö., & Gökçen H. (2008). A mixed integer programming model for remanufacturing in reverse logistics environment. Int J Adv Manuf Technol, 39, 1197-1206.

Du F., & Evans G. W. (2008). A bi-objective reverse logistics network analysis for post-sale Service. Computers & Operations Research, 35, 2617-2634.

El-Sayed M., Afia N., & El-Kharbotly A. (2010). A stochastic model for forward–reverse logistics network design under risk. Computers & Industrial Engineering, 58, 423-431.

Fahimnia B., Jabbarzadeh A., & Sarkis J. (2014). A Tradeoff Model for Greesn Supply ChainPlanning: A Leanness-versus-Greenness Analysis. Omega.

Fonseca M.C., García-Sánchez Á., Ortega-Mier M., & Saldanha-da-Gama F. (2010). A stochastic bi-objective location model for strategic reverse logistics.18, 158-184.

Gotschol A., De Giovanni P., & Esposito Vinzi V. (2014). Is environmental management an economically sustainable business?. Journal of Environmental Management, 144, 73-82.

Hugo A., & Pistikopoulos E.N. (2005). Environmentally conscious long-range planning and design of supply chain networks. Journal of Cleaner Production, 13, pp. 1471-149.

Kumar Pati R., Vrat P., & Kumar P. (2008). A goal programming model for paper recycling system. Omega, 36, 405-417.

Kusi-Sarpong S., Sarkis J., & Wang X. (2016). Assessing green supply chain practices in the Ghanaian mining industry: A framework and evaluation.Int. J. Production Economics.

Lee J.E., Gen M., & Rhee K.G. (2009). Network model and optimization of reverse logistics by hybrid genetic algorithm. Computers & Industrial Engineering, 56, 951-964.

Mirhedayatian S. M., Azadi M., Farzipoor Saen R. (2014). A novel network data envelopment analysis model for evaluating green supply chain management.  Int. J. Production Economics, 147, 544-554.

Mirzapour S.M.J., Al-e-hashem., Baboli A., & Sazvar Z. (2013). A stochastic aggregate production planning model in a green supply chain: Considering flexible lead times, nonlinear purchase and shortage cost functions. European Journal of Operational Research, 230, 26-41.

Mitra S., & Priya Datta P. (2013). Adoption of green supply chain management Practices and their impact on performance: an exploratory study of Indian manufacturing firms. International Journal of Production Research, .52(7), 2085-2107.

Pishvaee M. S., Jolai F., & Razmi J. (2009). A stochastic optimization model for integrated forward/reverse logistics network design. Journal of Manufacturing Systems, 28, 107-114.

Pishvaee M.S., Rabbani M., & Torabi S.A. (2011). A robust optimization approach to closed-loop supply chain network design under uncertainty. Applied Mathematical Modelling, 35, 637-649.

Pishvaee M.S., & Razmi J. (2012). Environmental supply chain network design using multi-objective fuzzy mathematical programming. Applied Mathematical Modelling, 36, 3433-3446.

Qing-hua ZH., & Yi-jie D. (2007). Evolutionary Game Model between Governments and Core Enterprises in Greening Supply Chains. SETP, 27, 85–89.

Quariguasi Frota Neto J., Bloemhof-Ruwaard J.M., Nunen J.A.E.E. Van., & Heck E. van. (2008). Designing and evaluating sustainable logistics networks. Int. J. Production Economics, 111,195-208.

Rao S., & Rao S. (2009). Engineering optimization: theory and practice. John Wiley & Sons.

Rostamzadeh R., Govindan K., Esmaeili A., & Sabaghi M. (2015). Application of fuzzy VIKOR for evaluation of green supply chain management practices. Ecological Indicators, 49,183-203.

Sarkis J., Zhu Q., & Lai K.h. (2011). An organizational theoretic review of green supply chain management literature.  Int. J. Production Economics, 130, 1-15.

Soysal M., Bloemhof-Ruwaard J.M., Haijema R., & J.vanderVorst J.G.A. (2015). Modeling an Inventory Routing Problem for perishable products with environmental considerations and demand uncertainty. Int. J. Production Economics, 164, 118-133.

Uygun Ö., & Dede A. (2016). Performance Evaluation of Green Supply Chain Management Using Integrated Fuzzy Multi-Criteria Decision Making Techniques. Computers & Industrial Engineering.

Wang F., Lai X., & Shi N. (2011). A multi-objective optimization for green supply chain network design.  Decision Support Systems, 51, 262-269.

Weraikat D., Kazemi Zanjani M., & Lehoux N. (2015). Coordinating a Green Reverse Supply Chain in Pharmaceutical Sector by Negotiation.Computers & Industrial Engineering.

Wu Ch., & Barnes D. (2016). An integrated model for green partner selection and supply chain construction. Journal of Cleaner Production, 112, 2114-2132.