maghsoud Amiri; mohsen shafiei nikabadi; Armin Jabbarzadeh
Abstract
In recent years, the complexity of the environment, the intense competition of organizations, the pressure of governments on producers to manage waste products, environmental pressures and most importantly, the benefits of recycling products have added to the importance of designing a closed loop supply ...
Read More
In recent years, the complexity of the environment, the intense competition of organizations, the pressure of governments on producers to manage waste products, environmental pressures and most importantly, the benefits of recycling products have added to the importance of designing a closed loop supply chain network. Also, the existence of inherent uncertainties in the input parameters is another important factor that the lack of attention them can affect the strategic, tactical and operational decisions of organizations. Given these reasons, this research aims to design a multi-product and multi period closed loop supply chain network model in uncertainty conditions. To this aim, first a mixed-integer linear programming model is proposed to minimize supply chain costs. Then, for coping with hybrid uncertain parameters effectively, randomness and epistemic uncertainty, a novel robust stochastic-possibilistic programming (RSPP) approach is proposed. Furthermore, several varieties of RSPP models are developed and their differences, weaknesses, strengths and the most suitable conditions for being used are discussed. Finally, usefulness and applicability of the RSPP model are tested via the real case study in an edible oil industry.
Milad Yari; Mir Saman Pishvaee; Armin Jabbarzadeh
Abstract
The main aim of this paper is to provide a model for supply chain design of decorative stones in competitive conditions by taking into account the risk of the disruption. The main tools used in this study are mathematical programming and game theory which Stackelberg game is often used for competitive ...
Read More
The main aim of this paper is to provide a model for supply chain design of decorative stones in competitive conditions by taking into account the risk of the disruption. The main tools used in this study are mathematical programming and game theory which Stackelberg game is often used for competitive modeling. The aim of the proposed model is to consider potential risks of disruption and competitive situation in the market. Also, due to the problem situation, we use meta-heuristic methods like particle swarm optimization and biogeography based optimization for solving and verification of the model. The results show that the occurrence of disruption affects in location decisions of production and distribution centers, price of products and profit of chain components