project management
ali mohaghar; Fatemeh Saghafi; Ebrahim Teimoury; Jalil Heidary Dahooie; Abdolkarim sabaee
Abstract
The application of supply chain management within the construction industry presents significant challenges due to the transient nature of construction projects, high levels of customization, low repeatability of activities, absence of a production line, and interdependent relationships among activities. ...
Read More
The application of supply chain management within the construction industry presents significant challenges due to the transient nature of construction projects, high levels of customization, low repeatability of activities, absence of a production line, and interdependent relationships among activities. Construction supply chains are intricate systems, where the final performance results from numerous decisions made across multiple independent companies. Interactions among supply chain stakeholders and the unique characteristics of each project create complex phenomena with multiple interconnected elements and variables. The Viable System Model (VSM), rooted in organizational cybernetics, provides a structured approach to addressing complex and unstructured problems. This structured approach allows analysts to gain in-depth insights into the functional issues of the existing system and understand how to modify the system design to adapt to internal and external disruptions.MethodologyDespite the extensive capabilities of the Viable System Model as a diagnostic tool for assessing organizational structure and achieving viability, a systematic and distinct methodology for its application is lacking. Researchers in VSM often do not employ a specific methodology for systems analysis. In this study, we propose a methodology for applying the VSM as a diagnostic tool for organizations, derived from a review of theoretical foundations and practical requirements of VSM. Building on Jackson's methodology outlined in his book "System Thinking, Creative Holism for Managers," we have developed a methodology by integrating Jackson's approach with case study research. This methodology includes stages such as designing a diagnostic framework, selecting case studies, identifying systems, conducting system diagnosis, and validating the model. We applied this methodology to diagnose the supply chain of an Iranian petrochemical construction project, resulting in the development of a viable system model. The validity of the research methodology and findings was confirmed through expert participation and the application of multiple qualitative criteria.ResultsFollowing the selection of a case study and the identification of systems, we investigated the existence and function of five subsystems and communication channels within the focal system using a case study approach to gather information and develop the viable system model. Data was collected through semi-structured interviews conducted at various managerial and technical levels within a prominent project-oriented company in Iran's petrochemical industry. These interviews lasted between 45 and 60 minutes each. Data collection methods also included observation and document examination. The research involved a semi-structured interview with 18 individuals to explore complications within each of the five systems. Subsequently, the collected data was adapted to the model's requirements, and findings were extracted through intra-case analysis and coding. This process led to model development and the identification of weaknesses within the construction supply chain from the perspective of the five systems and communication channels, with a focus on achieving viability.ConclusionsThe developed model highlights weaknesses and bottlenecks within the focal system, shedding light on the most significant issues. A critical issue identified in the case study is the evident lack of coherence within System 4 and System 5. The results reveal that the incoherence of System 5, divided between parts of the company at level 0 and the parent company at a higher recursion level outside the focal system, results in defects within the communication channels related to this system, including C14 (Connection of System 4 with System 5), C9 (Algedonic channel), and C16 (Connection of System 5 with the homeostatic loop of Systems 3 and 4). Additionally, System 4, which is jointly managed by a segment of the company and the project management consultant, leads to disruptions in channels related to this system, particularly C13 (Homeostatic loop between Systems 3 and 4), C14 (Communication between System 4 and System 5), and C15 (Homeostat of System 4 with the future environment). Concerning common errors, the dominant error is E5, attributed to the lack of coherence between Systems 4 and 5 and the weak performance of System 2. This error largely stems from inconsistencies between the two operational units responsible for the engineering phase and the construction and installation phase. To achieve viability within the focal system, several measures should be taken, including the establishment of centralized Systems 4 and 5 within the company and strengthening communication channels with incomplete or insufficient capacity. These channels include the connection between System 4 and System 5 (C14), the Algedonic channel (C9), the connection of System 5 with the homeostatic loop of Systems 3 and 4 (C16), the homeostatic loop of System 3 and System 4 (C13), and the homeostat of System 4 with the future environment (C15). A crucial homeostatic link involves the communication and interaction between System 3 and System 4 (C13) to establish dynamic communication between the current project environment and its future. However, the interaction between these two systems is currently conflicting and misaligned due to the lack of coherence within System 4 and differences in functionality between System 3's perspective on the current state and System 4's perspective on the future state. Balancing the emphasis on System 4 and the future with the daily operations of the supply chain's operational units within System 1 is essential to avoid supply chain disruptions or inefficiencies. The lack of coherence within System 4 also affects the performance of other systems, particularly System 5, as well as the stability of System 4 in relation to the future environment. Inadequate information about the future environment can hinder informed decision-making within the system. By addressing these points within the model, the construction project's supply chain can move toward viability and better adapt to changes in the project environment. This research represents one of the limited studies in the implementation of VSM within the construction project environment.
project management
Yahya Dorfeshan; Seyed Meysam Mousavi; Behnam Vahdani
Abstract
Critical path method is one of the most widely used approaches in planning and project control. Time is considered a determinative criterion for the critical path. But it seems necessary to regard other criteria in addition to time. Besides time criterion, effective criteria such as quality, cost, risk ...
Read More
Critical path method is one of the most widely used approaches in planning and project control. Time is considered a determinative criterion for the critical path. But it seems necessary to regard other criteria in addition to time. Besides time criterion, effective criteria such as quality, cost, risk and safety are considered in this paper. Then, the developed problem is solved as a multi-attribute decision making problem by a new extension of MULTIMOORA method. Moreover, type-2 fuzzy sets are utilized for considering uncertainties. Type-2 fuzzy sets are more flexible and capable than type-1 fuzzy sets in reflecting uncertainties. Eventually, SWARA method is developed for determining the weights of efficient criteria such as time, cost, quality, risk and safety under type-2 fuzzy environment. Finally, an applied example has been solved to illustrate the calculations and the ability of the proposed approach. Based on the example, it is clear that the longest path in terms of time criterion is not a critical path, and other influential criteria are involved in determining the critical path. IntroductionToday, in the competitive business environment, project management, planning, scheduling, and project control hold significant importance. One of the widely used and common methods in the field of project planning and control is undoubtedly the Critical Path Method (CPM). In the Critical Path Method, activity durations are predetermined. However, in the real world, many projects and activities are executed for the first time and have considerable uncertainties. Therefore, obtaining an accurate estimate of the time and resources required for activities is challenging. However, considering a single criterion, such as time, will not yield fruitful results, and other influential parameters such as risk should also be taken into account. For example, a path that carries a high level of risk may not be the critical path at present, but it may become critical in the future due to the high risk involved. For this reason, this research explores other influential criteria besides time and considers them in determining the critical path.Materials and MethodsIn this study, the problem under investigation is the determination of the critical path while considering other influential criteria in addition to the time criterion. To achieve this, multiple criteria decision-making methods are used to consider criteria such as time, cost, quality, risk, and safety in determining the critical path. Furthermore, to account for the uncertainties of the real world and incorporate expert opinions, type-2 fuzzy sets are utilized. It should be noted that the MULTIMOORA method is employed for ranking the critical paths, while the SWARA method is used to determine the weights of the influential criteria in determining the critical path. Both methods have been extended and developed in a type-2 fuzzy environment.Discussion and Results Initially, the proposed method is solved considering only the time criterion. As observed, the critical path has changed, indicating the importance of other criteria in determining the critical path. Then, the proposed method is solved considering pairwise combinations of the criteria, where the time criterion is treated as a fixed criterion due to its high importance. In fact, the problem is solved considering time and cost, time and risk, time and quality, and time and risk. By increasing or decreasing each criterion, the critical path changes, demonstrating the significance of all criteria in determining the project's critical path. To determine the critical path, it is necessary to consider all criteria together. These variations in the criteria and the resulting change in the critical path clearly indicate the importance and influence of other criteria in determining the critical path.ConclusionIn this article, an extension of the MULTIMOORA multi-criteria decision-making method is presented in the reference section. Additionally, Type-2 fuzzy numbers, which offer more flexibility and better representation of uncertainties compared to Type-1 fuzzy numbers, are utilized. The MULTIMOORA multi-criteria decision-making method is developed to incorporate these Type-2 fuzzy numbers. The opinions of three experts are used numerically for the time and cost criteria and linguistically as linguistic variables for the quality, risk, and safety criteria. Ultimately, the weights of the influential criteria of time, cost, risk, quality, and safety are determined using the developed SWARA method under Type-2 fuzzy environment. Finally, the most critical path is determined by considering not only the time criterion but also the influential criteria of cost, quality, risk, and safety. Based on the conducted research, a set of criteria including time, cost, quality, risk, and safety are used in this article, and additional criteria can also be added to this set.