Document Type : Research Paper
Authors
1 PhD student in Industrial Management, Faculty of Management, Accounting and Human Sciences, Islamic Azad University, Qazvin, Iran
2 Professor, Department of Industrial Management, Faculty of Management and Accounting, Shahid Beheshti University, Tehran, Iran
Abstract
In today's industrial units, operators monitor equipment performance, and the challenging coordination between units in vast operating environments with high volumes of equipment can lead to irreparable damage. Despite considerable technological advancements in inspection and surveillance, this responsibility can be effectively delegated to smart devices and the Internet of Things (IoT). Furthermore, the emergence of "edge computing" technology has prompted researchers to explore edge-based computing designs due to their numerous benefits. This study presents a combined model of IoT and civilian drones for intelligent monitoring of industrial equipment performance, employing an edge computing approach. The model is specifically investigated through a case study involving wind turbines. The model evaluates the performance of drones for intelligent monitoring of wind turbines in three stages: 1) Detection process, 2) UAV computational evacuation process, and 3) UAV local computation process. Given the dual purpose of the final model, which involves a combination of the aforementioned three steps, a genetic method was employed for problem-solving with negligible sorting. The amplified epsilon restriction method, utilizing random numbers, was also considered, but the combination of genetic and negligible sorting methods outperformed it, particularly in large problems where the enhanced epsilon restriction method struggled to provide timely responses due to the inherent complexity of the problem.
Introduction
Today, in various industries, the productivity and efficiency of equipment contribute to the advancement of production and the profitability of production units. Beyond repair costs, equipment breakdowns also result in the expense of lost opportunities for the production unit. Without a solution to prevent these costs, bankruptcy for production units becomes a real possibility. Therefore, consideration should be given to a solution for the optimal monitoring of equipment. Clearly, swift action is crucial when any equipment is damaged, and such rapid response is unattainable through human effort alone. Despite significant technological advances in inspection and monitoring, this task can be delegated to smart tools and the Internet of Things (IoT). The IoT is regarded as one of the most crucial factors for the prosperity and progress of today's and future industrial businesses. Modernizing equipment is a priority for today's industries to quickly adapt to the evolving market changes and harness existing technologies. Businesses incorporating IoT into their infrastructure experience substantial growth in areas such as security, productivity, and profitability. As the use of industrial IoT increases, productivity levels in industries are naturally expected to rise. The IoT can accumulate massive amounts of information and data, enabling factories and companies to optimize their systems and equipment without being hindered by technological and economic limitations. However, a challenge arises from the substantial volume of data generated by the IoT, which is sent to cloud computing centers for processing. Centralized (cloud) processing results in high communication delays and lowers the data transfer rate between IoT devices and potential users, creating operational challenges in the network. To address this issue, the concept of edge computing has been proposed. Edge computing allows IoT services to process data near their own data sources and data sinks instead of relying on the cloud environment. This approach leads to reduced communication delays and more efficient utilization of computing, storage, and network resources. It also minimizes execution time and energy consumption, proving to be highly beneficial for IoT applications. Consequently, with the advent of "edge computing" technology, many researchers have embraced edge computing-based designs due to its numerous advantages.
Materials and Methods
In this research, a combined model of the Internet of Things and civilian drones was presented for the intelligent monitoring of industrial equipment, utilizing an edge computing approach. The model was investigated through a case study involving wind turbines. The performance of UAVs for intelligent monitoring of wind turbines was examined in three stages: 1) Detection process, 2) UAV computational evacuation process, and 3) UAV local computing process. Given the dual purpose of the final model, which involved a combination of the aforementioned three steps, the model was addressed using genetic methods with sparse sorting and the enhanced epsilon constraint method employing random numbers. The genetic method with sparse sorting outperformed the enhanced epsilon limit method, particularly in problems with large dimensions. The complexity of the problem made it challenging for the enhanced epsilon constraint method to provide timely responses in such cases.
Results
The findings of this research offer valuable insights for the effective and accurate management and monitoring of industrial equipment across various industrial units, aiming to optimize costs, quality, and inspection time. Additionally, this research can provide guidance in considering regulatory restrictions in equipment placement before constructing an industrial unit. During the equipment arrangement phase, the model presented in this research can be utilized for optimal energy consumption and time management. As the combined model of the Internet of Things and civilian drones for intelligent monitoring of industrial equipment is a novel concept in the literature, there exist numerous opportunities for further development in this field. This may include the application of the model in additional case studies, such as enhancing the intelligent monitoring of power supply systems, fire services, etc. Moreover, there is potential for refining the mentioned model under conditions where drones operate simultaneously without a specific sequence.
Conclusion
Failure to monitor industrial equipment properly can result in substantial financial losses for factories and production units. The improper operation of equipment may lead to complete failure, necessitating the need for replacement. Additionally, increased equipment downtime, quality issues, reduced production speed, safety hazards, and environmental pollution can be consequences of equipment failure, ultimately diminishing the profitability of the production unit. Considering factors such as embargoes, emphasis on domestic production, and self-sufficiency, accurate supervision becomes economically crucial for factories.
Effective management of the proper operation of industrial equipment is a fundamental requirement for every production unit, given that industrial equipment represents a significant investment for the unit. If device maintenance is limited to repairs only after breakdowns occur, production devices will consistently face unexpected halts, preventing production productivity from reaching its predetermined goals. Therefore, designing a framework for the "intelligent monitoring of the performance of all relevant industrial equipment" stands as one of the most crucial actions for any production unit. Depending on the type of equipment, monitoring the performance of industrial equipment may encompass periodic inspections, maintenance and repair planning, and scheduling the optimal operational time for the equipment
Keywords
Main Subjects
- Al-Khafaji, H. (2022). Data Collection in IoT Using UAV Based on Multi-Objective Spotted Hyena Optimizer. Sensors. 22(22). pp. 88-96. Doi: 3390/s22228896
- Alturjman, F., Alturjman, S. (2020). 5G/IoT-enabled UAVs for multimedia delivery in industry-oriented applications. Multimedia Tools and Applications, 79 (25), 74-89. DOI:1007/s11042-018-6288-7
- Athreyasa,G. (2021). Roadway Traffic Analysis Scheme using Unmanned Aerial Vehicle Based on Image Processing and Edge Computing. Turkish Journal of Computer and Mathematics Education (TURCOMAT). 12(3). 122-131. DOI:https://org/10.17762/turcomat.v12i12.7788
- Bahhar ,, Chokri, B., Sofiene, B., Hedi, S. (2021). Real-time intelligent monitoring system based on IoT. 18th International Multi-Conference on Systems, Signals & Devices (SSD). DOI:10.1109/SSD52085.2021.9429358
- Cao, P., YI, L., Chao, Y., Shengli, X., Kan, X. (2019). MEC-Driven UAV-Enabled Routine Inspection Scheme in Wind Farm Under Wind Influence. Digital Object Identifier, 51(33). 342-361. DOI:1109/ICICTA49267.2019.00148
- Caro, M., Cano, M. (2019). IoT System Integrating Unmanned Aerial Vehicles and LoRa Technology: A Performance Evaluation Study. Wireless Communications and Mobile Computing. 36(4). 134-151. DOI:1155/2019/4307925
- Chagh, Y., Guennoun Z., Jouihri, Y. (2016). Voice service in 5G network: Towards an edge-computing enhancement of voice over Wi-Fi, in Proc. Telecommun. Signal Process. (TSP). 65(5). 116–120. DOI:10.1109/TSP.2016.7760841
- Lagkas, T., Bibi, S., Argyriou, V., Panagiotis, G. (2018). UAV IoT Framework Views and Challenges: Towards Protecting Drones as “Things”. Sensors. 18(1). 18-25. https://org/10.3390/s18114015
- Mavrotas, G. (2009). Effective implementation of the e-constraint method in Multi-Objective Mathematical Programming problems. Applied mathematics and computation. 213(3), 455–465. https://org/10.1016/j.amc.2009.03.037
- Na, Z., Mengshu, Z., Jun, W. (2020). UAV-assisted wireless powered Internet of Things: Joint trajectory optimization and resource allocation. Ad Hoc Networks. 98(23). 254-276. https://org/10.1016/j.adhoc.2019.102052
- Pasandideh, S.H.R., Niaki, S.T.A. (2012). Genetic application in a facility location problem with random demand within queuing framework. Journal of Intelligent Manufacturing. 23(3). 651-659. DOI:1007/s10845-010-0416-1
- Salhaoui, M., Guerrero, Antonio., Arioua, M., Francisco, J., Ortiz, A., Oualkadi, E., Luis Torregrosa, C. (2019). Smart Industrial IoT Monitoring and Control System Based on UAV and Cloud Computing Applied to a Concrete Plant. Sensors. 19(3). 16-30. https://org/10.3390/s19153316
- Wulfovich, S., Rivas, H., Matabuena, P. (2020). Drones in Healthcare. Digital Health. 4(22). 159–168. DOI:1007/978-3-319-61446-5_11
- Zhao, T., Zhou, S., Guo, X., Zhao, Y., Niu, Z. (2016). Pricing policy and computational resource provisioning for delay-aware mobile edge computing. IEEE/CIC Int. Commun. China (ICCC). 1–6. DOI:10.1109/ICCChina.2016.7636891
- Zhang, K., Mao, Y., Leng, S., Vinel, A., Zhang, Y. (2016). Delay constrained offloading for mobile edge computing in cloud-enabled vehicular networks. Workshop Resilient Netw. Design Modeling (RNDM). 33(2). 288–294. DOI:1109/RNDM.2016.7608300
- Alipour, Mirzamohammad, Rajoul Dezfuli, Ali, and Danesh Kohan, Hossein. (2009). The Use of Unmanned Aerial Vehicles for the Inspection of Oil and Gas Pipelines. Second Conference on Pipelines and Related Industries. Tehran (in persian).
- Ghazawi, Alireza, and Tabataba, Forough Alsadat. (2020). Drones and Their Applications in Public Security and Smart Policing. Scientific Journal of Information and Communication Technology in Law Enforcement, 1(1), 67-90 (in persian).
- Ghazawi, Nafiseh, and Rahmani, Donya. (2021). Proposing a Model for Drone Routing for Post-Crisis Damage Assessment in Affected Areas. Eighteenth International Industrial Engineering Conference, 58-83 (in persian).
- Haghighi, Hassan, Sadati, Seyed Hossein, Karimi, Jalal, and Dehghani, Seyed Mohammad Mehdi. (2018). Continuous Multi-UAV Surveillance Using Base Scan Patterns to Minimize Review Time. Aeronautical Engineering, 20(1), 1-12 (in persian).
- Kazemi, Hamid, and Elhian, Samaneh. (2020). Development of Non-military Drones in Iran and Its Challenges. Technology in Aerospace Engineering, 2(23), 45-64 (in persian