نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی صنایع، دانشکده مدیریت و مهندسی صنایع، دانشگاه صنعتی مالک اشتر، تهران، ایران

2 استادیار، گروه مهندسی صنایع، دانشکده مدیریت و مهندسی صنایع، دانشگاه صنعتی مالک اشتر، تهران، ایران

3 دانشیار، گروه مهندسی صنایع، دانشکده مدیریت و مهندسی صنایع، دانشگاه صنعتی مالک اشتر، تهران، ایران

چکیده

استراتژی همکاری با تأمین‌کننده نقش مهمی در قدرت سازمان در بازار امروز دارد. توانایی نظارت بر عملکرد تأمین‌کننده و پایش استراتژی همکاری بین سازمان و تأمین‌کننده یک قابلیت حیاتی برای حفظ رابطه قوی سازمان و تأمین‌کننده است. این مقاله با پایش مستمر عملکرد تأمین‌کننده در طول زمان به بررسی انتخاب مدل همکاری با تأمین‌کننده و پایش استراتژی همکاری در طول زمان می‌پردازد. برای این منظور یک مدل پایش پروفایلی فازی چندگانه در دو مرحله برای پایش هزینه‌های پیش‌بینی‌نشده تأمین‌کننده ارائه‌شده است. در گام نخست معیارها و شاخص‌ها برای ارزیابی فرآیند تحویل، کیفیت با توجه به منابع کتابخانه‌ای و نظر کارشناسان و نخبگان صنعت موردنظر استخراج می‌شود. در مرحله بعد، در فاز یک‌پایش با استفاده از روش  پارامترهای مدل مبنی بر تفاوت‌های متوالی را برای پروفایل فازی چندگانه فرآیند تحویل و کیفیت به‌صورت جداگانه محاسبه و پایش می‌شوند و در فاز دوم از روش نسبت درستنمایی برای نظارت بر پروفایل‌ها به‌صورت فازی در طول زمان استفاده می‌شود تا در صورت وجود هشدار در کمترین زمان ممکن نمودار کنترلی آن را نشان دهد. در آخرین مرحله با استفاده از نتایج پروفایل‌های فازی فرآیند تحویل و کیفیت و با استفاده از هوش مصنوعی و ابزار سیستم استنتاج فازی به پایش هزینه‌های پیش‌بینی‌نشده و تصمیم‌گیری در مورد تأمین‌کننده و پایش استراتژی اتخاذشده پرداخته می‌شود. این مدل در صنعت خودروسازی شرکت ایران‌خودرو و تأمین‌کننده قطعات گیربکس توسط شرکت نیرومحرکه اجراشده است. با توجه پایش مستمر عملکرد شرکت تأمین‌کننده در هزینه‌های غیرقابل‌پیش‌بینی، شرکت ایران‌خودرو استراتژی همکاری بلندمدت را انتخاب و پایش می‌کند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Designing a Model for Monitoring Supplier Cooperation Strategy Using Fuzzy Profile Monitoring of Unforeseen Costs

نویسندگان [English]

  • poorya naseri 1
  • morteza abbasi 2
  • karim atashgar 3

1 PhD Student Department of Industrial Engineering, Faculty of management and Industrial Engineering, Malek Ashtar University of Technology, Tehran, Iran

2 Assistant Professor, Department of Industrial Engineering, Faculty of management and Industrial Engineering, Malek Ashtar University of Technology, Tehran, Iran

3 Associate Professor, Department of Industrial Engineering, Faculty of management and Industrial Engineering, Malek Ashtar University of Technology, Tehran, Iran

چکیده [English]

This article investigates the selection of a cooperation model with suppliers and the continuous monitoring of the collaboration strategy over time by tracking the supplier's performance. A multiple fuzzy profile monitoring model is proposed and implemented in two stages to oversee the supplier’s unforeseen costs. In the first stage, criteria and indicators for evaluating the delivery process and quality are identified based on literature reviews and expert opinions from industry leaders. In the second stage, a two-phase monitoring approach is adopted. First, using the T² method, the model’s parameters based on successive differences are calculated and separately monitored for the multiple fuzzy profiles of delivery and quality processes. In the second phase, the likelihood ratio method is applied to track the profiles over time, enabling the control chart to signal any warning in the shortest possible time. In the final stage, the results from the fuzzy profiles of delivery and quality processes, combined with artificial intelligence and the fuzzy inference system tool, are used to monitor unforeseen costs, make decisions regarding the supplier, and assess the adopted strategy. This model has been implemented in Iran's automotive industry, specifically within Iran Khodro Company and its gearbox parts supplier, Niromoharkeh Company.

کلیدواژه‌ها [English]

  • cooperation with supplier
  • unforeseen cost
  • multiple fuzzy profile monitoring
  • fuzzy inference system
  1. 1 Amy H.I. Lee., (2007). A fuzzy AHP evaluation model for buyer–supplier relationships with the consideration of benefits, opportunities, costs and risks. International Journal of Production Research, 47:15, 4255-4280. DOI:10.1080/00207540801908084.
  2.  2 Talluri, S.; Sarkis, J. (2002). A model for performance monitoring of suppliers. Int. J. Prod. Res, 40, 4257–4269. DOI:10.1080/‌00207540210152894.
  3. 3 Dey, P.K.; Bhattacharya, A.; Ho, W. (2015). Strategic supplier performance evaluation: A case-based action research of a UK manufacturing organization. Int. J. Prod. Econ, 166, 192–214. DOI:10.1016/j.ijpe.2014.09.021.
  4. 4 Chen, S.-P., and W. Y. Wu. (2017). A Systematic Procedure to Evaluate an Automobile Manufacturer–Distributor Partnership. European Journal of Operational Research 205 (3): 687–698. DOI:10.1016/j.ejor.2010.01.036.
  5. 5 Villena, V. H., and C. W. Craighead. (2017). On the Same Page? How Asymmetric BuyerSupplier Relationships Affect Opportunism and Performance. Production and Operations Management 26: 491–508. DOI:10.5465/AMBPP.2015.11040abstract.
  6. 6 Son, B. G., C. Kocabasoglu-Hillmer, and S. Roden. (2016). A Dyadic Perspective on RetailerSupplier Relationships Through the Lens of Social Capital. International Journal of Production Economics 178: 120–131. DOI:10.1016/j.ijpe.2016.05.005.
  7. 7 Faraz, A, Z. Zacharia, M. Gerschberger. (2016). Make Sure You Understood Your Strategic Partner in Your Buyer–Supplier Relationship. IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), December 4–7, Bali, Indonesia. DOI:10.1109/IEEM.2016.7797992.
  8. 8 Faraz, A., Sanders, N., Zacharia, Z., Gerschberger, M., (2018). Monitoring type B buyer–supplier relationships. International Journal of Production Research. DOI:10.1111/j.1745-493X.1998.tb00292.x.
  9. 9 Autry, C. W., B. D. Williams, and S. Golicic. (2014). Relational and Process Multiplexity in Vertical Supply Chain Triads: An Exploration in the U.S. Restaurant Industry. Journal of Business Logistics 35 (1): 52–70. DOI:10.1111/jbl.12034
  10. 10 Suraraksa, J., Shin, K.S., (2019). Comparative Analysis of Factors for Supplier Selection and Monitoring: The Case of the Automotive Industry in Thailand. Sustainability. https://doi.org/‌10.3390/‌su11040981.
  11. 11 Liang C., & Li Q., (2006). Manufacturing execution systems (MES) assessment and investment decision study. In:Proceedings of 2006 IEEE international conference on systems, and cybernetics, Taipei, Taiwan, pp.5285–5290, DOI:10.1109/ICSMC.2006.385148.
  12.  12 Dey, P.K.; Cheffi,W. (2013). Green supply chain performance measurement using the analytic hierarchy process: A comparative analysis of manufacturing organisations. Prod. Plan. Control, 24, 702–720, DOI:10.1080/09537287.2012.666859
  13. 13 Yakovleva, N.; Sarkis, J.; Sloan, T. (2012). Sustainable benchmarking of supply chains: The case of the food industry. Int. J. Prod. Res., 50, 1297–1317, DOI:10.1080/00207543.2011.571926.
  14. 14 Giannakis M, Dubey R, Vlachos I, Ju Y, (2019). Supplier sustainability performance evaluation using the analytic network process. Journal of Cleaner Production. DOI:10.1016/j.jclepro.2019.119439
  15. 15 Pradhan, S.K., Routroy, S. (2016). Improving supply chain performance by Supplier Development program through enhanced visibility. 6th International Conference of Materials Processing and Characterization, DOI:10.1016/j.matpr.2017.11.613
  16. 16 Torres-Ruiz, Aineth,. Ravindran, A. Ravi. (2017). Multiple Criteria Framework for the Sustainability Risk Assessment of a Supplier Portfolio. Journal of Cleaner Production. DOI:10.1016/j.jclepro.2017.10.304.
  17. 17 Maestrini, V., Luzzini, D,. Caniato, F., Ronchi, S. (2018). Effects of monitoring and incentives on supplier performance: an agency theory perspective. International Journal of Production Economic. DOI:10.1108/IJOPM-10-2016-0589.
  18. 18 Wang, J., Swartz, C.L.E., Corbett, B,. Huang, K., (2020). Supply Chain Monitoring Using Principal Component Analysis. Industrial & Engineering Chemistry Research,, 59, 12487−12503, DOI:10.1021/acs.iecr.0c01038.
  19. 19 Duan, Y., Hofer, C,. Aloysius, J., (2020). Consumers care and firms should too: On the benefits of disclosing supplier monitoring activities. Journal of Operations Management, 1-22. DOI:10.5465/AMBPP.2020.20405abstract.
  20. 20 Shafiq, A., Johnson, P. F., Klassen, R. D., (2022). monitoring: implications for buyer performance. International Journal of Operations & Production Management, DOI:10.1108/IJOPM-03-2021-0149.
  21. 21 Hu, O., Hu, J., Yang, Z., (2022). Performance implications of peer monitoring among suppliers,  Journal of Marketing and Logistics, ISSN: 1355-5855. DOI:10.1108/APJML-02-2022-0158.
  22. 22 Changalima, I, A,. Ismail, A, J., Mchopa, A., D., (2023). Effects of supplier selection and supplier monitoring on public procurement efficiency in Tanzania: a cost-reduction perspective. Journal of Management. DOI:10.1108/XJM-04-2022-0077.
  23. 23 Eilon, W.-G. and Christofides (1971). Distribution Management: Mathematical Modelling and Practical Analysis, Charles Griffin and Company,London. DOI:10.1109/TSMC.1974.4309370.
  24. 24 H.C.W. LauWan Kai PangChristina W.Y. Wong, (2002). Methodology for monitoring supply chain performance: a fuzzy logic approach. Logistics Information Management, Vol. 15 Iss 4 pp. 271 – 280. DOI:10.1108/09576050210436110.
  25. 25 Montgomery, D.C., (2005). Introduction to Statistical Quality Control. Fifth Edition, John Wiley and Sons, Inc.
  26. 26 Noorossana, R., Saghaei, A., Amiri, A., (2011). Statistical Analysis of Profile Monitoring. John Wiley & Sons, Inc., Hoboken, New Jersey. DOI:10.1002/9781118071984.
  27. 27 Shyamal, A.K., and Pal, A., (2007). Triangular fuzzy matrices”, Iranian Journal of Fuzzy Systems. Vol. 4, No. 1, pp. 75-87.
  28. 28 Taheri, M., Mashinchi, M., (2013). An introduction to statistics and fuzzy probability. Shahid Bahoner Publications, Kerman. (in persian)
  29. 29 Arabpour A. R., and Tata, M., (2008). Estimating the parameters of a fuzzy linear regression Model, Iranian Journal of Fuzzy Systems, 2, 1-19. DOI: 10.1007/s00500-020-05331-7.
  30. 30 Noorossana, R., Eyvazian, M., Amiri, A., and Mahmoud, M. A. (2010b). Statistical monitoring of multivariate multiple linear regression profiles in phase I with calibration application. Quality and Reliability Engineering International, 26(3), 291–303. DOI:10.1002/qre.1066.
  31. 31 Eyvazian, M., Noorossana, R., Saghaie, A., and Amiri, A. (2010). Phase II Monitoring of Multivariate Multiple Linear Regression Profiles. Published online in Quality and Reliability Engineering International, DOI:10.1002/qre.1119.
  32. 32 N. Aissaoui, M. Haouari, and E. Hassini, (2007). Supplier selection and order lot sizing modeling: a review. Computers and Operations Research, vol. 34, no. 12, pp. 3516–3540. DOI:10.5267/‌j.ijiec.2010.03.007.
  33. 33 Pandey, Shah, and Gajjar. (2017). A fuzzy goal programming approach for selecting sustainable suppliers. Benchmarking An International Journal 24(5). DOI:10.1108/BIJ-11-2015-0110
  34. 34 Badri Ahmadi, H., S. Kusi-Sarpong, and J. Rezaei. (2017b). Assessing the Social Sustainability of Supply Chains Using Best Worst Method. Resources, Conservation and Recycling 126: 99–106. DOI:10.1016/j.resconrec.2017.07.020.
  35. 35 A. Asemi, (ECDC 2014), Intelligent MCDM method for supplier selection under fuzzy environment, International Journal of Information Science and Management, Special Issue, 33-40.