Document Type : Research Paper



Reducing the cost of wastage and shortage of hospitals' blood products with regard to the compatibility of blood groups
Blood supply chain management is considered one of the main components of the health system of each country. This chain consists of two-component blood collection and supply of products for blood donors has been formed. This article focuses on the issue of the supply of blood products; that tries to provide a mathematical model to reduce waste costs and a shortage of blood products to hospitals. In this model, while meeting the needs of different groups of hospitals, blood in hospitals is minimized inventory costs. A mathematical model in five hospitals affiliated Blood Transfusion Center of East Azerbaijan is implemented. With regard to the compatibility of blood groups and red cell products supply costs and inventory decreased 18% o + blood group also declined to be compatible with other blood types.
Keywords: blood supply chain, RBC, compatibility, BTC


Beliën, J., & Forcé, H. (2012). Supply chain management of blood products: A literature review. European Journal of Operational Research, 217(1), 1–16.
Blake, J., & Hardy, M. (2013). Using simulation to evaluate a blood supply network in the Canadian maritime provinces. Journal of Enterprise Information Management, 26(1/2), 119–134.
Cetin, E., & Sarul, S. (2009). A Blood Bank Location Model: A Multiobjective Approach. European Journal of Pure and Applied Mathematics, 2(1), 112–124.
Chen, I. (2010). In a world of throwaways, making a dent in medical waste. NEW York Times.
Cheraghali, A. M. (2012). Overview of Blood Transfusion System of Iran: 2002–2011. Iranian Journal of Public Health, 41(8), 89–93. Retrieved from
Duan, Q., & Liao, T. W. (2014). Optimization of blood supply chain with shortened shelf lives and ABO compatibility. International Journal of Production Economics, 153, 113–129.
Fahimnia, B., Jabbarzadeh, A., Ghavamifar, A., & Bell, M. (2015). Supply chain design for efficient and effective blood supply in disasters. International Journal of Production Economics.
Gharehbaghian, A., Abolghasemi, H., & Namini Tabrizi, M. (2008). status of blood transfusion services in iran. Asian Journal of Transfusion Science, 2(13–17).
Goldfarb, R. S. (2013). Shortage, Shortage, Who’s Got the Shortage? The Journal of Economic Education, 44(3), 277–297.
Grant, D. B. (2010). Integration of supply and marketing for a blood service. Management Research Review, 33(2), 123–133.
Gunpinar, S., & Centeno, G. (2015). Stochastic integer programming models for reducing wastages and shortages of blood products at hospitals. Computers & Operations Research, 54, 129–141.
Haijema, R., van der Wal, J., & van Dijk, N. M. (2007). Blood platelet production: Optimization by dynamic programming and simulation. Computers & Operations Research, 34(3), 760–779.
Jabbarzadeh, A., Fahimnia, B., & Seuring, S. (2014). Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application. Transportation Research Part E: Logistics and Transportation Review, 70, 225–244.
Kazemi, S. M., Rabbani, M., Tavakkoli-Moghaddam, R., & Shahreza, F. A. (2017). Blood inventory-routing problem under uncertainty. Journal of Intelligent & Fuzzy Systems, 32(1), 467–481.
Maramazi Ghaflez, B., Kaab Omeir, H., Jalali Far, M. A., Saki, N., Torabizadeh Maatoghi, J., & Naderpour, M. (2014). Study of rate and causes of blood components discard among Ahwaz’s hospital. Blood-Journal. Retrieved from
Nagurney, A., Masoumi, A. H., & Yu, M. (2012). Supply chain network operations management of a blood banking system with cost and risk minimization. Computational Management Science, 9(2), 205–231.
Nahmias, S. (2011). Perishable inventory systems. springer.
Omidkhoda, A., Amini Kafi-Abad, S., Pourfatollah, A. A., & Maghsudlu, M. (2016). Blood collection, components preparation and distribution in Iran, 2008–2012. Transfusion and Apheresis Science, 54(1), 117–121.
Osorio, A. F., Brailsford, S. C., Smith, H. K., Forero-Matiz, S. P., & Camacho-Rodríguez, B. A. (2016). Simulation-optimization model for production planning in the blood supply chain. Health Care Management Science, 1–17.
Puranam, K., Novak, D. C., Lucas, M. T., & Fung, M. (2017). Managing blood inventory with multiple independent sources of supply. European Journal of Operational Research, 259(2), 500–511.
Rytilä, J. S., & Spens, K. M. (2006). Using simulation to increase efficiency in blood supply chains. Management Research News, 29(12), 801–819.
Sapountzis, C. (1989). Allocating Blood to Hospitals. Journal of the Operational Research Society, 40(5), 443–449.
Seifried, E., Klueter, H., Weidmann, C., Staudenmaier, T., Schrezenmeier, H., Henschler, R., … Mueller, M. M. (2011). How much blood is needed? Vox Sanguinis, 100(1), 10–21.
Sha, Y., & Huang, J. (2012). The Multi-period Location-allocation Problem of Engineering Emergency Blood Supply Systems. Systems Engineering Procedia, 5, 21–28.
Shander, A., Hofmann, A., Gombotz, H., Theusinger, O. M., & Spahn, D. R. (2007). Estimating the cost of blood: past, present, and future directions. Best Practice & Research Clinical Anaesthesiology, 21(2), 271–289.
Stanger, S. H. W., Wilding, R., Yates, N., & Cotton, S. (2012). What drives perishable inventory management performance? Lessons learnt from the UK blood supply chain. Supply Chain Management: An International Journal, 17(2), 107–123.
Stanger, S. H. W., Yates, N., Wilding, R., & Cotton, S. (2012). Blood Inventory Management: Hospital Best Practice. Transfusion Medicine Reviews, 26(2), 153–163.
Van Dijk, N., Haijema, R., Van Der Wal, J., & Sibinga, C. S. (2009). Blood platelet production: a novel approach for practical optimization. Transfusion, 49(3), 411–420.
Yates, N., Stanger, S., Wilding, R., & Cotton, S. (2017). Approaches to assessing and minimizing blood wastage in the hospital and blood supply chain. ISBT Science Series, n/a-n/a.
yousefi nejad attari,  mahdi, pasandide, S. H. R., Agaie,  afsaneh, & Akhavan Niaki, S. T. (2017). Presenting a stochastic multi choice goal programming model for reducing wastages and shortages of blood products at hospitals. Journal of Industrial and Systems Engineering, 10(special issue on healthcare), 0. Retrieved from
Zahiri, B., & Pishvaee, M. S. (2016). Blood supply chain network design considering blood group compatibility under uncertainty. International Journal of Production Research, 1–21.
Zahiri, B., Torabi, S. A., Mousazadeh, M., & Mansouri, S. A. (2015). Blood collection management: Methodology and application. Applied Mathematical Modelling, 39(23–24), 7680–7696.
Zhou, D., Leung, L. C., & Pierskalla, W. P. (2011). Inventory Management of Platelets in Hospitals: Optimal Inventory Policy for Perishable Products with Regular and Optional Expedited Replenishments. Manufacturing & Service Operations Management, 13(4), 420–438.