Document Type : Research Paper



It’s more than one decade that industrial development based on the structure of industrial clusters as a new strategy has been planned and administrated by developed industrialized countries. Considering the importance of the role of industrial clusters in economic development programs, providing solutions to improve, progress and development of clusters has always been a concern for researchers and specialists.
The aim of this study is to provide a mechanism for pricing process of the product in this industrial-economic phenomenon; So that the structure of the proposed model is defined based on mechanisms and activities of the components of industrial clusters. The proposed pricing process is presented based on the concept of Stackelberg game theory and tariff pricing strategy, and in order to solve the model in production level of cluster, a meta-heuristic genetic algorithm is used. Finally, the performance and efficiency of the proposed model is studied in the form of a numerical example, and using the parameter tuning Taguchi method the optimal value of the model variables are presented. Based on the obtained results, the optimal wholesale price of cluster’s products are determined and each manufacturer select the appropriate tariff based on its optimal demand.


آشتیانی، وحید؛ معرفی، ابولفضل؛ ایلانلو، مهدی (1392)، مدیریت خوشه‌های صنعتی، انتشارات مهر سجاد، چاپ اول.
عبدلی، قهرمان (1392)، نظریه بازی ها و کاربردهای آن (بازی های ایستا و پویا با اطلاعات کامل) ، سازمان انتشارات جهاد دانشگاهی واحد تهران، چاپ چهارم.
محتشمی، علی؛ فلاحیان نجف آبادی، علی (1392)، زمانبندی حمل و نقل کامیون ها در زنجیره تامین با درنظر گرفتن بارانداز تقاطعی و با استفاده از الگوریتم های فراابتکاری، فصلنامه مطالعات مدیریت صنعتی، سال یازدهم، شماره 31، صفحات 55-84.
Lee, W.J., Kim, D., (1993) Optimal and heuristic decision strategies for integrated product and marketing planning. Decision Science. 24 (6), pp. 1203–1214.
Li, M., Jiang, X. (2012), “Co-Opetition Pricing Game of Industrial Clusters based on Incomplete Information Cournot Model”, International Journal of Advancements in Computing Technology, Volume4, Number18, pp. 424-432.
Mousavi, S.M., Alikar, N., Akhavan Niaki, S.T., Bahreininejad, A., (2015), “Two tuned multi-objective meta-heuristic algorithms for solving a fuzzy multi-state redundancy allocation problem under discount strategies”, Applied Mathematical Modelling, Vol 39, pp. 6968-6989.
SeyedEsfahani, M.M, Biazaran, M., Gharakhani, M., (2011). A game Theoretic approach to coordinate pricing and vertical co-op advertising in manufacturer–retailer supply chains, European Journal of Operational Research, Vol 211, pp. 263–273.
Shy, Oz., (2008) “How to Price: A Guide to Pricing Techniques and Yield Management”, Published in the United States of America by Cambridge University Press, New York.
Wang, Ch., Huang, R., Wei, Q., (2015), “Integrated pricing and lot-sizing decision in a two-echelon supply chain with a finite production rate”, International journal of production economics”, Vol. 161, pp.44-53.
Yue, D., You, F., (2014), “Game-Theoretic modeling and optimization of multi-echelon supply chain design and operation under Stacklberg game and market equilibrium”, Computers and Chemical Engineering, Vol 71, pp. 347-361.
Zhao, J., Wang, L., (2015), “Pricing and retail service decisions in fuzzy uncertainty environments”, Applied Mathematics and Computation, 250, pp. 580-592.
In Persian
Ashtiani, V., Moarefi, A., Ilanlo, M. (2013). Industrial Cluster Management, Mehr Sajad Publications, First Edition.
Abdoli, Gh. (2013). Game theory and its application (Static and Dynamic games with complete information), Tehran University Jahad Publishing Organization, Fourth Edition.
Mohtashami, A., Fallahian Najaf Abadi, A. (2014), Scheduling trucks transportation in supply chain regarding cross docking using meta-heuristic algorithms, Industrial Management Studies, Eleventh Year, No. 31, Pages 55-84.