Document Type : Research Paper


1 Associate Professor, Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

2 Ph.D. Candidate in Industrial Engineering, Department of Industrial Engineering, Faculty of Engineering, University of Yazd, Yazd, Iran


Location, routing and allocation decisions in supply chain management philosophy is undoubtedly one of the most important issues have very effect on the supply chain cost reduction and customer satisfaction. This paper presents an integrated approach to the distribution network. The objective functions of the proposed mathematical model consist of minimizing the total costs associated with transportation and warehouse rental costs and also minimize the risk of the system. The model has high computational complexity and the exact method of solving it is not possible in a reasonable time. To solve the proposed model a multi-objective meta-heuristic algorithm which, known as the objective harmony search algorithm is presented. To demonstrate the effectiveness and efficiency of the proposed algorithm in solving the model, algorithm parameters are adjusted in the best possible rates using the Taguchi method. Then a random sample of the issues generated and the performance of the proposed algorithm comparing with NSGA-ǁ and NRGA are evaluated


اعتباری فرهاد و ترابی نیلوفر، (1398). "ارائه مدل مکانیابی-مسیریابی ظرفیت دار پویا با در نظرگرفتن تقاضای وابسته به قیمت"، مطالعات مدیریت صنعتی، دوره 17، شماره 52، ص 89-124.
کریمی مرضیه،  کاظمی ابوالفضل، عزیزمحمدی مهدی، (1394). "ارائه یک مدل چند­هدفه جدید برای مسئله انتخاب تأمین­کننده در زنجیره تامین و حل آن با الگوریتم­های فراابتکاری چند هدفه مبتنی بر پارتو"، مهندسی صنایع و مدیریت شریف، دوره­ی 1-31، شماره­ی 1/ 2، ص 61-71.
کریمی مرضیه،  کاظمی ابوالفضل و نادری علیرضا ، (1398). "ارائه و حل یک مدل برنامه­ریزی دو­هدفه جهت انتخاب تأمین کننده بادر نظرگرفتن شرایط تخفیف و کمبود"، مطالعات مدیریت صنعتی، دوره 17، شماره 53، ص 127-158.
Ahmadi, J. A., Azad, N. (2010). “Incorporating location, routing and inventory decisions in supply chain network design”, Transportation Research, Vol. 46, PP. 582-597.
Ahn, C. W. and Ramakrishna, R. S. (2002). “A genetic algorithm for shortest path routing problem and the sizing of population”. IEEE Transaction on EvolutionaryComputation, vol. 6, No. 6, PP. 566-579.
Al Jadaan, O., Rao, C.R. and Rajamani, L. “Non-Dominated ranked genetic algorithm for solving Multi-Objective optimization problems: NRGA”, Journal of Theoritical and Applied Information Technology, pp.60-67, (2008).
Almouhanna, A., Quintero-Araujo, C. L., Panadero, J., Juan, A. A., Khosravi, B., & Ouelhadj, D. (2020). “The location routing problem using electric vehicles with constrained distance”. Computers & Operations Research, 115, 104864.‏
Azizi, V., & Hu, G. (2020). “Multi-product pickup and delivery supply chain design with location-routing and direct shipment”. International Journal of Production Economics, 107648.‏
Barahona, F., Jensen, D., (1998). “Plant Location with Minimum Inventory”, Mathematical Programming, Vol. 83, PP. 101-111.
Barreto, S. S., Ferreira, C., Paixa, J. and Santos, B. S. (2007). “Using clustering analysis in capacitated location-routing problem”. European Journal of Operational Research, Vol. 179, PP. 968–977.
Darvish, M., Archetti, C., Coelho, L. C., & Speranza, M. G. (2019). “Flexible two-echelon location routing problem”. European Journal of Operational Research, 277(3), 112
Deb, K. “Multi-objective optimization using evolutionary algorithms”, Chichester, UK: Wiley (2000).
Deb, K., Agrawal, S., Pratap, A. and Meyarivan, T. (2001). “A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II”, In: proceedings of the parallel problem solving from nature VI (PPSN-VI) conference,PP. 849-858.
Dukkanci, O., Kara, B. Y., & Bektaş, T. (2019). “The green location-routing problem”. Computers & Operations Research, 105, 187-202.‏
Geem, Z.W., Kim, J.H., Loganathan, G.V. (2001). “A New Heuristic Optimization Algorithm: Harmony search”. Simulation, Vol. 76, PP. 60-68.
Ghiani, G. and Laporte, G. (1999), “Eulerian location problems”, Networks, vol. 34, No. 4, PP. 291-302.
Lee, K.S., Geem, Z. W., (2004). “A new structural optimization method based on the harmony search algorithm”. Computers and Structures, Vol. 82, PP. 781-798.
Owen, S. H., & Daskin, M. S. (1998). “Strategic facility location: A review”. European journal of operational research, 111(3), 423-447.‏
Rabbani, M., Heidari, R., Farrokhi-Asl, H., & Rahimi, N. (2018). “Using metaheuristic algorithms to solve a multi-objective industrial hazardous waste location-routing problem considering incompatible waste types”. Journal of Cleaner Production, 170, 227-241.‏
Rahmati, S.H.A., Zandieh, M., and Yazdani, (2012). “M. Developing two multi-objective evolutionary algorithms for the multi-objective flexible job shop scheduling problem”, International Journal of Advanced Manufacturing Technology, 64, 915-932.

Rui Borges Lopes, Carlos Ferreira, Beatriz Sousa Santos,( 2016) “A simple and effective evolutionary algorithm for the capacitated location–routing problem”,Computers & Operations Research, Vol. 70, PP. 155–162.

Schiffer, M., Schneider, M., Walther, G., & Laporte, G. (2019). “Vehicle routing and location routing with intermediate stops: a review”. Transportation Science, 53(2), 319-343.‏
Schott, J.R. (1995). “Fault tolerant design using single and multicriteria genetic algorithms optimization”, Master’s thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA.
Srivastava, H. and Benton, W.C. (1990). “The location-routing problem: considerations in physical distribution system design.” Computers & operations research, vol. 17, No. 5, PP. 427-435.
Taguchi, G., “Introduction to quality engineering”, (1986).White Plains: Asian Productivity Organization/UNIPUB,
Tai-Hsi Wu, Chinyao Low, Jiunn-Wei Bai, (2001). “Heuristic solutions to multi-depot location-routing problems”, Management Science.
Toro, E., Franco, J., Echeverri, M., Guimarães, F & Rendón, R. (2017). “Green open location-routing problem considering economic and environmental costs”.International Journal of Industrial Engineering Computations , Vol. 8, No. 2, PP. 203-216.
Yao, Z., Lee, L. H., Jaruphongsa, W., Tan, V., Hui, C. F. (2010) “Multi - source facility location - allocation and inventory problem”, European Journal of Operational Research, Vol. 207, PP. 750-762.
Yu, V. F., Lin, S-W., Lee, W. and Ting, C.-J. (2010). “A simulated annealing heuristic for the capacitated location-routing problem”. Computers & Industrial Engineering, Vol. 58, PP. 288-299.
Zitler, E.  (1999). “Evolutionary Algorithms for multi-objective optimization: method and applications”. p.h.D Thesis, dissertation ETHNO. 13398, Swaziland Federal Institute of Technology Zorikh, Switzerland.
Zitler, E. and Thiele, L. “Multiobjective optimization using evolutionary algorithms a comparative case study”, In A.E. Eiben, T. Back, M. Schoenauer and H.P. Schwefel (Eds.), Fifth International Conference on Parallel Problem Solving from Nature (PPSN-V), Berlin, Germany, pp.292-301, (1998).