صالحی فر, محمد. (1398) بررسی رفتار بازده و ریسک بیت کوین درمقایسه با بازارهای طلا، ارز و بورس با رویکرد مدل های GJR-GARCH و گارچ آستانه. مهندسی مالی و مدیریت اوراق بهادار, 10(40), 152-168.
References
Aggarwal, A., Gupta, I., Garg, N., & Goel, A. (2019, August). “Deep Learning Approach to Determine the Impact of Socio Economic Factors on Bitcoin Price Prediction”, In 2019 Twelfth International Conference on Contemporary Computing (IC3) (pp. 1-5). IEEE.
Albariqi, R., & Winarko, E. (2020, February). “Prediction of Bitcoin Price Change using Neural Networks”, In 2020 International Conference on Smart Technology and Applications (ICoSTA) (pp. 1-4). IEEE.
Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J. A., & Felten, E. W. (2015, May). “Sok: Research perspectives and challenges for bitcoin and cryptocurrencies”, In 2015 IEEE Symposium on Security and Privacy (pp. 104-121). IEEE.
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). “Learning phrase representations using RNN encoder-decoder for statistical machine translation”, arXiv preprint arXiv:1406.1078.
Dutta, A., Kumar, S., & Basu, M. (2020). “A Gated Recurrent Unit Approach to Bitcoin Price Prediction”, Journal of Risk and Financial Management, 13(2), 23.
Greaves, A., & Au, B. (2015). “Using the Bitcoin transaction graph to predict the price of Bitcoin”, Quoted, 3, 22.
Karakoyun, E. S., & Cibikdiken, A. O. (2018, May). “Comparison of arima time series model and lstm deep learning algorithm for bitcoin price forecasting”, In The 13th multidisciplinary academic conference in prague 2018 (the 13th mac 2018) (pp. 171-180).
Katsiampa, P. (2017). “Volatility estimation for Bitcoin: A comparison of GARCH models”, Economics Letters, 158, 3-6
Madan, I., Saluja, S., & Zhao, A. (2015). “Automated bitcoin trading via machine learning algorithms”, 2015. Dept. Comput. Sci., Stanford Univ., Stanford, CA, USA, Tech. Rep.
McNally, S., Roche, J., & Caton, S. (2018, March). “Predicting the price of bitcoin using machine learning”, In 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP) (pp. 339-343). IEEE.
Poyser, O. (2019). “Exploring the dynamics of Bitcoin’s price: A Bayesian structural time series approach”, Eurasian Economic Review, 9(1), 29-60.
Rashid, T. A., Fattah, P., & Awla, D. K. (2018). “Using accuracy measure for improving the training of lstm with metaheuristic algorithms”, Procedia Computer Science, 140, 324-333.
Sin, E., & Wang, L. (2017, July). “Bitcoin price prediction using ensembles of neural networks”, In 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD) (pp. 666-671). IEEE.
Sovbetov, Y. (2018). “Factors influencing cryptocurrency prices: Evidence from bitcoin, ethereum, dash, litcoin, and monero”, Journal of Economics and Financial Analysis, 2(2), 1-27.
Xiong, L., & Lu, Y. (2017, April). “Hybrid ARIMA-BPNN model for time series prediction of the Chinese stock market”, In 2017 3rd International Conference on Information Management (ICIM) (pp. 93-97). IEEE.
Yamak, P. T., Yujian, L., & Gadosey, P. K. (2019, December). “A Comparison between ARIMA, LSTM, and GRU for Time Series Forecasting”, In Proceedings of the 2019 2nd International Conference on Algorithms, Computing and Artificial Intelligence (pp. 49-55).
Yenidoğan, I., Çayir, A., Kozan, O., Dağ, T., & Arslan, Ç. (2018, September). “Bitcoin forecasting using arima and prophet”, In 2018 3rd International Conference on Computer Science and Engineering (UBMK) (pp. 621-624). IEEE.
Zhang, G. P. (2003). “Time series forecasting using a hybrid ARIMA and neural network model”, Neurocomputing, 50, 159-175.
Salehifar, M, (2019).” Investigation of Bitcoin Returns and Risk Behavior in Comparison with Gold, Currency and Stock Markets with the Approach of GJR-GARCH and Threshold GARCH Models”, Journal of Financial Engineering and Securities Management, 10(40),152-168. [In Persian].
.