Document Type : Research Paper



In this paper, supply chain network design problem is modeled as a fuzzy multi objective mixed integer programming which seeks to locate the plants, DCs, and warehouses by considering disruption, supply and demand risk. Maximizing net present value of supply chain cash flow, minimizing delivery tardiness and maximizing reliability of suppliers are considered as objective functions in the proposed mathematic model. In order to have a more reliable model in case of disruption, the robustness measure is used in the model. Moreover, because of the lack of information, the economic factors such as tax rate, interest rate, and inflation are considered as uncertain factors in the model. An interactive possibilistic programming approach is applied for solving the multi-objective model. To solve larger size instances, genetic algorithm is proposed. Finally numerical examples are presented to show how the model works in practice


حیاتی، م.، عطایی، م.، خالو کاکایی، ر.، صیادی، ا.ر.، ارائه مدلی برای ارزیابی ریسکهای
زنجیره تأمین با استفاده از تکنیکهای تصمیمگیری چندشاخصه، فصلنامه مطالعات مدیریت
- .92 34 ،3747 ، صنعتی، دوره 32 ، شماره 79
میرغفوری، س.ح.، شریف آبادی، ع.م.، اسدیان اردکانی، ف.، طراحی مدلی برای ارزیابی
ریسک در زنجیره تأمین با رویکرد شبکه عصبی مصنوعی )مطالعه موردی: شرکت فولاد
- - .23 3 ،3747 ، آلیاژی ایران یزد(، فصلنامه مطالعات مدیریت صنعتی، دوره 33 ، شماره 72
Azaron, A., Brown, K., Tarim, S., & Modarres, M. (2008). A multi-objective stochastic programming approach for supply chain design considering risk. International Journal of Production Economics, 116(1), 129-138 .
Benyoucef, L., Xie, X., & Tanonkou, G. A. (2013). Supply chain network design with unreliable suppliers: a Lagrangian relaxation-based approach. International Journal of Production Research, 51(21), 6435-6454. Farahani, R. Z., Hassani, A., Mousavi, S. M., & Baygi, M. B. (2014). A hybrid artificial bee colony for disruption in a hierarchical maximal covering location problem. Computers & Industrial Engineering, 75, 129-141.
Gaudenzi, B., & Borghesi, A. (2006). Managing risks in the supply chain using the AHP method. International Journal of Logistics Management, The, 17(1), 114-136 .
Georgiadis, M. C., Tsiakis, P., Longinidis, P., & Sofioglou, M. K. (2011). Optimal design of supply chain networks under uncertain transient demand variations. Omega, 39(3), 254-272 .
Goh, M., Lim, J., & Meng, F. (2007). A stochastic model for risk management in global supply chain networks. European Journal of Operational Research, 182(1), 164-173 .
Gumus, A. T., Guneri, A. F., & Keles, S. (2009). Supply chain network design using an integrated neuro-fuzzy and MILP approach: A
comparative design study. Expert Systems with Applications, 36(10), 12570-12577 .
Hahn, G. J., & Kuhn, H. (2012). Value-based performance and risk management in supply chains: A robust optimization approach. International Journal of Production Economics, 139(1), 135-144 .
Li, Q., Zeng, B., & Savachkin, A. (2013). Reliable facility location design under disruptions. Computers & Operations Research, 40(4), 901-909.
Lin, C.-C., & Wang, T.-H. (2011). Build-to-order supply chain network design under supply and demand uncertainties. Transportation Research Part B: Methodological, 45(8), 1162-1176 .
Liu, Z., & Cruz, J. M. (2012). Supply chain networks with corporate financial risks and trade credits under economic uncertainty. International Journal of Production Economics, 137(1), 55-67 .
Nagurney, A. (2010 .)Supply chain network design under profit maximization and oligopolistic competition. Transportation Research Part E: Logistics and Transportation Review, 46(3), 281-294 .
Nickel, S., Saldanha-da-Gama, F., & Ziegler, H.-P. (2012). A multi-stage stochastic supply network design problem with financial decisions and risk management. Omega, 40(5), 511-524 .
Peng, P., Snyder, L. V., Lim, A., & Liu, Z. (2011). Reliable logistics networks design with facility disruptions. Transportation Research Part B: Methodological, 45(8), 1190-1211 .
PrasannaVenkatesan, S., & Kumanan, S. (2012). Multi-objective supply chain sourcing strategy design under risk using PSO and simulation. The International Journal of Advanced Manufacturing Technology, 61(1-4), 325-337 .
Qin, Y .)1100( .On Flexible Strategy for Operation Risk in Supply Chain. Paper presented at the Computational Sciences and Optimization (CSO), 2011 Fourth International Joint Conference on.
Rezapour, S., & Farahani, R. Z. (2010). Strategic design of competing centralized supply chain networks for markets with deterministic demands. Advances in Engineering Software, 41(5), 810-822 .
Singh, A. R., Mishra, P., Jain, R., & Khurana, M. (2012). Design of global supply chain network with operational risks. The International Journal of Advanced Manufacturing Technology, 60(1-4), 273-290 .
Snyder, L. V., & Daskin, M. S. (2006). Stochastic p-robust location problems. IIE Transactions, 38(11), 971-985 .
Speier, C., Whipple, J. M., Closs, D. J., & Voss, M. D. (2011). Global supply chain design considerations: Mitigating product safety and security risks. Journal of Operations Management, 29(7), 721-736 .
Torabi, S., & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets and Systems, 159(2), 193-214 .
Tuncel, G., & Alpan, G. (2010). Risk assessment and management for supply chain networks: A case study. Computers in industry, 61(3), 250-259 .
Wu, T., Blackhurst, J., & Chidambaram, V. (2006). A model for inbound supply risk analysis. Computers in industry, 57(4), 350-365 .
Zsidisin, G. A., & Ritchie, B. (2008). Supply chain risk: a handbook of assessment, management, and performance (Vol. 124): Springer