Document Type : Research Paper


1 PhD student in Industrial Management, Department of Industrial Management, Faculty of Management and Economics, Science and Research Unit, Islamic Azad University, Tehran, Iran

2 Associate Prof, Islamic Azad University Central Tehran Branch, Iran

3 Assistant Professor, Department of Industrial Management, Islamic Azad University, South Tehran Branch, Tehran, Iran

4 Department of industrial management, Central Tehran Branch, Islamic Azad University, Tehran , Iran


The field of supply chain management has focused on crucial topics such as coordination, cooperation, and competition among chain members. Game theory has emerged as a valuable tool for examining supply chain management issues, as it analyzes various situations and their impact on supply chain performance (Naimi Sediq et al., 2013; Shafi'i et al., 2018). While every action and performance within the supply chain influences the outcomes of the game, it does not solely determine them. The goal is to balance the parties involved in the supply chain and create satisfaction for the end customer (Metinfer et al., 2018).
Although extensive research has been conducted in supply chain management within the steel industry, the impact of sanctions on Nash equilibria and the application of three approaches (Cournot, Stackelberg, and collusion) to achieve game balance in different scenarios have not been thoroughly investigated. This research aims to fill this gap by addressing the mentioned research question. The current study focuses on determining the optimal price using an intelligent decision-making system based on game theory within the steel industry, considering the presence or absence of the sanctions variable.
Our country currently possesses several relative advantages in terms of steel production conditions, including abundant and affordable energy, iron ore and refractory raw materials, considerable steel production experience, and a skilled and cost-effective workforce. By acquiring new production technology, these advantages enable our country to play a competitive and influential role in the global steel market. However, the steel industry faces significant challenges such as price fluctuations, extreme price disparities across regions, and delayed delivery due to a lack of efficient supply chain management. Therefore, the main research question aims to provide a model that incorporates key variables, such as the supply and demand of final and intermediate products in the steelmaking industry and the future trends in production and quantity changes.
Research method
This article introduces a composite model that combines artificial neural networks and game theory to assist stakeholders in the steel industry in determining optimal production levels and price levels. To predict the price of steel, three techniques were employed: Bayesian neural networks, support vectors, and Grassberg anti-diffusion. Additionally, to address the issue of binary identification in the neural network, three different network structures were introduced: feedforward network structure, competitive network structure, and backward associative memory network structure.
Research findings
The first scenario is the non-cooperative game (Cournot model scenario) where each participant aims to maximize their profit and would not deviate from their strategy as it would lead to a reduction in their profits. The second scenario is the sequential non-cooperative game (Stackelberg model scenario), in which two chains engage in a confrontation of the Stackelberg game type. The leader's goal is to determine the best strategy while considering all rational strategies that follower players can employ to maximize their income. This scenario demonstrates that the rate of price and profit increase is lower compared to sequential and cooperative game modes. The third scenario is the cooperative game (collusion model scenario). In this scenario, the allocation of profits among the cooperating members is crucial to ensure the stability of their cooperation. The Grassberg anti-diffusion method exhibits higher accuracy due to its higher true positive (TP) and true negative (TN) values compared to other algorithms. Additionally, it has fewer false positives (FP) and false negatives (FN) because a higher TP and TN indicate more accurate predictions in the tested dataset, while FP and FN represent incorrect predictions. The inclusion of the sanctions variable as a moderating factor in the steel price forecasting model accounts for the potential reduction in production and increased cost price. Through the model, it was discovered that the Grossberg method yields more accurate steel price forecasting. Consequently, price forecasting in the model is based on the Grossberg method.
Research results
The results indicate that transitioning from the Cournot game to the Stackelberg game and from the Stackelberg game to the collusion game in the steel industry's supply chain leads to a $6 increase in price per ton and a product supply ranging from 1500 to 4000 tons. In other words, as collusion in the steel market intensifies, more products are introduced into the market, resulting in an increase in product prices and a decrease in the welfare of steel consumers. According to the findings, increased competition in the industry reduces the profitability and production levels of producers while enhancing consumer welfare. Conversely, higher levels of monopoly exhibit the opposite effect. To maintain a balanced supply chain in the steel industry and prevent potential problems, it is recommended to adopt the Stackelberg game approach, which aligns more closely with reality. It is worth noting that the order in which players enter the game impacts the Nash equilibrium. Therefore, exploring market entry monitoring regulations and rules in this industry becomes crucial since the steel industry involves high entry and exit costs. Policymakers and industry managers should consider monitoring the entry and exit of players, formulate game standards and rules among market participants. Based on the results, the primary recommendation of this research is to increase competition intensity and adopt the Cournot approach in the industry to reduce prices and increase production. Additionally, enhancing international relations and diplomatic efforts will mitigate the impact of sanctions on the industry, leading to cost price improvements and an increase in the level of comparative advantage at the international level.


Main Subjects

  1. دری محسن، جعفری میثم، چهارسوقی کمال، (1398)، انتخاب خط‌مشی سفارش هماهنگ شده در زنجیره تأمین دو سطحی: رویکرد نظریه بازی، تحقیقات مدرن در تصمیم‌گیری. (3)4، 73-47
  2. جعفری، ح.، حجازی، س.ر.، و راستی برزوکی، م. (1395). تصمیمات قیمت‌گذاری در زنجیره تأمین دو کاناله شامل تولیدکننده انحصاری و خرده‌فروشان دوپولیستی: رویکرد نظری بازی. مجله تجارت رقابت صنعتی. 16، 343-323
  3. حیدری، ج.، گویندان، ک.، و اصلانی، ع. (1398). تصمیمات قیمت‌گذاری و سبز شدن در یک زنجیره تأمین دو کاناله سه لایه. مجله بین‌المللی اقتصاد تولید. 217، 196-185
  4. ستاک، م.، کفشیان اهر، ح.، و علایی، س. (1396). هماهنگی اشتراک‌گذاری اطلاعات و تبلیغات مشارکتی در یک زنجیره تأمین غیرمتمرکز با خرده‌فروشان رقیب که رفتار سواری رایگان را در نظر می‌گیرند. مجله مهندسی صنایع و سیستم‌ها. (2)10، 120-100
  5. سلیمانی، ف. (1395). تصمیمات قیمت‌گذاری بهینه در زنجیره تأمین دو کاناله فازی، محاسبات نرم (1)20، 696-689
  6. شفیعی، مرتضی، فرح گل، پوریا، (1398)، کاربرد تئوری بازی در تحلیل زنجیره تأمین با رویکرد بازار مشتری (موردمطالعه: سیمان فارس). مطالعات مدیریت صنعتی، 17(53)، 185-217.
  7. طالعی زاده، ع. نیکی، س.ت.ا؛ و وی (1392). مشکل چانه تأمین تک خریدار تک فروشنده مشترک با تقاضای تصادفی و سیستم‌های مبتنی بر دانش پیش‌زمان فازی. (8)48، 9-1
  8. قوامی فر، ع.، ع. ماکویی و ع.ع. طالعی زاده. (1396). طراحی یک شبکه زنجیره تأمین رقابتی انعطاف‌پذیر تحت خطرات اختلال: یک برنامه کاربردی در دنیای واقعی تحقیق حمل‌ونقل قسمت: بررسی لجستیک و حمل‌ونقل. 115، 109-87
  9. لطفی، ه.، نویدی، ح. (1391). «یک سیستم پشتیبانی تصمیم برای سطح تولید نفت اوپک بر اساس تئوری بازی و ANN»، پیشرفت در ریاضیات محاسباتی و کاربردهای آن. (1)2، 258-253
  10. متین فر، ف.، و آزادی پرند، ف.، و لونی، ع، (1398)، مروری بر رویکردهای نظریه بازی در شبکه توزیع هوشمند با تأکید بر بازی‌های همکارانه. صنایع الکترونیک، 10 (3)، 17-29.
  11. نعیمی صدیق. علی، چهارسوقی سید. کمال، شیخ محمدی. مجید (1391)، طراحی مدل هماهنگی در زنجیره تأمین رقابتی با استفاده از رویکرد نظریه بازی با همکاری و بدون همکاری، فصلنامه مدیریت صنعتی، دوره 4، شماره 14، ص 108-118.
  12. نویدی. حمیدرضا، رحمتی. علی (1392)، ارائه مدل رقابتی فروش چندجانبه در زنجیره‌های تأمین و تحلیل آن با استفاده از نظریه بازی‌ها، دهمین کنفرانس بین‌المللی هندسی صنایع، تهران. 1-7.
  13. نظری، ل.، سیف برقی، م.، و ستک، م. (1397). استفاده از تئوری بازی، مدل‌سازی و تحلیل مشکلات قیمت‌گذاری و موجودی در یک زنجیره تأمین حلقه بسته با سیاست بازگشت و چندین سازنده و کانال‌های فروش. ساینتیا ایرانیکا. (5)25، 2774-2759
  14. Boyack c, P. Meindl, S. Cohen, S. Roussel J. (2003). Supply Chain Management: Strategy, Planning & Operation. (3rd).
  15. Besik,D., Nagureney,A., Dutta,P. (2022). An Integrated multi-tiered supply chain Network model of competing Agricultural firms and processing firms. European Journal of Operation Research.
  16. Chen, P., Li, B., Jiang, Y., & Hou, P. (2017). The Impact of Manufacturer’s Direct Sales and Cost Information Asymmetry in a Dual-Channel Supply Chain with a Risk-Averse Retailer. International Journal of Electronic Commerce, 21(1), 43-66.
  17. Das,M., Kumar,D., Alam,Sh., (2021). Game thetheoreticalysis of a three-stage interconnected forward and reserve supply chain. Research Square,1.
  18. DoriM.., M. Jafari, and K. (2019). Chaharsoghi, Choosing coordinated ordering policy in the two-level supply chain: A game theory approach. Modern Research in Decision Making. 4(3), 47-73 (In Persian).
  19. Du, W., Y. Fan, and L. Yan. (2018). Pricing Strategies for Competitive Water Supply Chains under Different Power Structures: An Application to the South-to-North Water Diversion Project in China. Sustainability, 10(1), 8-22.
  20. Ghavamifar, A., A. Makui, and A.A. Taleizadeh. (2018). Designing a resilient competitive supply chain network under disruption risks: A real-world application. Transportation Research Part E: Logistics and Transportation Review, 115, 87-109. (In Persian).
  21. Giannoccaro, I. & pontrandolfo, P. (2004). "Supply ChainCoordinationn By Revenue Sharing Contracts". International Journal Of Production Economics, 89(2), 131-139.
  22. He, Y., Huang, H., & Li, D. (2020). Inventory and pricing decisions for a dual-channel supply chain with deteriorating products. Operational Research, 20, 1461-1503.
  23. Heydari, J., Govindan, K., & Aslani, A. (2019). Pricing and greening decisions in a three-tier dual-channel supply chain. International Journal of Production Economics, 217, 185-196. (In Persian).
  24. Jafari, H., Hejazi, S.R., & Rasti-Barzoki, M. (2016). Pricing Decisions in Dual-Channel Supply Chain Including Monopolistic Manufacturer and Duopolistic Retailers: A Game-Theoretic Approach. Journal of Industrial Competition Trade, 16, 323-343. (In Persian).
  25. Kai, J. (2016). Research on Cooperative Advertising Decisions in Dual-Channel Supply Chain Under Asymmetric Demand Information When Online Channel Implements Discount Promotion. Management Science and Engineering, 10(4), 13-19.
  26. Ke, H., Huang, H., & Gao, X. (2018). Pricing decision problem in the dual-channel supply chain based on experts' belief degrees. Soft Computing, 22, 5683-5698.
  27. Kochani, A.E. Ellinger, D.S. Rogers. (2004). Information accessibility: Customer responsiveness and enhanced performance. International Journal of Physical Distribution and Logistics Management, 25 (1), 4-17.
  28. Li, G., Li, L., Sethi, S. P., & Guan, X. (2019). Return strategy and pricing in a dual-channel supply chain. International Journal of Production Economics, 215(2), 153-164.
  29. Lotfi, E., Navidi, H. (2012). “A decision support system for OPEC oil production level based on game theory and ANN”. Advances in Computational Mathematics and its Applications, 2(1), 253-258. (In Persian)
  30.  Ma, J., Zangh, D.& Dong, J.,TU,Y. (2020). supply chain network economic model with the time-based competition. European Journal of Operational Research. 280(3), 889-.908.
  31. Matinfar, F., and Azadi Parand, F., and Looney, A. (2020). A review of game theory approaches in the intelligent distribution network with emphasis on collaborative games. Electronics Industries, 10 (3), 17-29. (In Persian).
  32. Matsui, K. (2020). Optimal bargaining timing of a wholesale price for a manufacturer with a retailer in a dual-channel supply chain. European Journal of Operational Research, 287, 225-236.
  33. Modak, N. M., & Kelle, P. (2019). Managing a dual-channel supply chain under price and delivery-time dependent stochastic demand. European Journal of Operational Research, 272(1), 147-161.
  34. Naimi Siddiq Ali, Chaharsooqi Seyed. Kamal, Sheikh Mohammadi Majid. (2012). Designing a coordination model in a competitive supply chain using the game theory approach with and without cooperation, Quarterly Journal of Industrial Management, Volume 4, Number 14, 108-118 (In Persian).
  35. ‌Navidi. N, Rahimi. R. (2013). Intermediate performance impacts of advanced manufacturing technology systems: An empirical investigation, Decision Sciences, 30 (4),993-1020. (In Persian).
  36. Nazari, L., Seifbarghy, M., & Setak, M. (2018). Using game theory, modeling and analyzing pricing and inventory problems in a closed-loop supply chain with the return policy and multiple manufacturers and sales channels. Scientia Iranica, 25(5), 2759-2774. (In Persian).
  37. Pegan, N.W. Davidson. (2017). Examining possible antecedents of IT impact on the supply chain & its effect on firm performance. Information and Management, 41 (2), 243-255.
  38. Raza, S.A., &Madhumohan Govindaluri, S. (2019). Pricing strategies in a dual-channel green supply chain with cannibalization and risk aversion. Operations Research Perspectives, 6(8), 100-118.
  39. Setak, M., Kafshian Ahar, H., & Alaei, S. (2017). Coordination of Information Sharing and Cooperative Advertising in a Decentralized Supply Chain with Competing Retailers Considering Free Riding Behavior. Journal of Industrial and Systems Engineering, 10(2), 100-120. (In Persian).
  40. Shafiee, Morteza, Farah Gol, Pouria. (2019). Application of game theory in supply chain analysis with customer market approach (Case study: Fars Cement). Industrial Management Studies, 17 (53), 185-217 (In Persian).
  41. Shi, S., Sun, J., & Cheng, T. (2020). Wholesale or drop-shipping: Contract choices of the online retailer and the manufacturer in a dual-channel supply chain. International Journal of Production Economics, 107-118.
  42. Soleimani, F. (2016). Optimal pricing decisions in a fuzzy dual-channel supply chain. Soft Computing, 20(1), 689-696. (In Persian).
  43. Taleizadeh, A. Niki, S. T.A. & Wee, H.M. (2013). Joint Single vendor single Buyer Supply Chin Problem With Stochastic Demand and Fuzzy Lead-Time Knowledge-based Systems. 48(8),1-9. (In Persian).
  44. Xue, J., Cui, J., A cooperative game model of supply chain logistics information based on collaborative immune quantum particle swarm optimization. International Journal of Manufacturing Technology and Management, 36(1),196-212
  45. Zhang, Y., & Hezarkhani, B. (2021). Competition in dual-channel supply chains: The manufacturers’ channel selection. European Journal of Operational Research, 91(1), 244-262.
  46. Zhou, J., Zhao, R., & Wang, W. (2019). Pricing decision of a manufacturer in a dual-channel supply chain with asymmetric information. European Journal of Operational Research, 278(3), 809-820.
  47. Yuan, L., Tao, X., Ramsey, T., Degefu, D. (2021). Simulating the principal-agent relationship between enterprise owners and professional managers using evolutionary game theory and system dynamics. Wiley-Hindawi, 3881254.