نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مدیریت صنعتی، واحد قم، دانشگاه آزاد اسلامی، قم، ایران

2 استادیار، گروه مدیریت صنعتی، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران

3 استادیار، گروه مدیریت صنعتی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

آلایندگی‎ ‎ناشی‎ ‎از‎ ‎دفن‎ ‎زیست‎ ‎توده،‎ ‎سود‎ ‎انرژیهای زیست‎ ‎توده‎ ‎و‎ ‎تقاضای‎ ‎شدید‎ ‎برای‎ ‎انرژی،‎ ‎توجه‎ ‎به‎ ‎شبکه‎ ‎زنجیره‎ ‎تامین‎ ‎زیست‎ ‎توده‎ ‎را‎ ‎بیشتر‎ ‎نموده‎ ‎است. هدف‎ ‎این‎ ‎پژوهش،‎ ‎طراحی‎ ‎مدل‎ ‎شبکه‎ ‎زنجیره‎ ‎تامین‎ ‎زیست‎ ‎توده‎ ‎با‎ ‎رویکرد‎ ‎اقتصادی‎ ‎‏ و زیست مجیطی، برای کاهش هزینه و کربن در شبکه زنحیره ‏تامین زیست‎ ‎توده است. عمده‎ ‎ترین‎ ‎شکافهای‎ ‎پژوهشی‎ ‎برطرف‎ ‎شده‎ ‎عبارتند‎ ‎از‎ ‎تعیین‎ ‎بخشی‎ ‎از‎ ‎زیست‎ ‎تودهها‎ ‎به‎ ‎عنوان‎ ‎خروجیهای‎ ‎مطلوب‎ ‎و‎ ‎نامطلوب‎ ‎و‎ ‎بررسی‎ ‎همزمان‎ ‎اختلال‎ ‎در‎ ‎عرضه‎ ‎مواد‎ ‎اولیه‎ ‎و‎ ‎تقاضای‎ ‎محصول‎ ‎نهایی‎ ‎است. مدل‎ ‎ریاضی،‎ ‎برنامهریزی‎ ‎خطی‎ ‎عدد‎ ‎صحیح‎ ‎مختلط‎ ‎می‎ ‎باشد‎. ‎تابع‎ ‎اول،‎ ‎کمینه‎ ‎سازی‎ ‎هزینه‎ ‎ها‎ ‎و‎ ‎تابع‎ ‎دوم،‎ ‎کمینه‎ ‎سازی‎ ‎میزان‎ ‎پخش‎ ‎کربن‎ ‎است.‏‎ ‎برای‎ ‎تک‎ ‎هدفه‎ ‎کردن‎ ‎تابع،‎ ‎تحت‎ ‎عدم‎ ‎قطعیت،‎ ‎از‎ ‎مدل‎ ‎ریاضیTH ‎‏ فازی استفاده‎ ‎گردیده‎ ‎است. عدم‎ ‎قطعیت‎ ‎و‎ ‎اختلال‎ ‎با‎ ‎سناریوسازی‎ ‎بررسی شده است. اعتبارسنجی‎ ‎مدل،‎ ‎در‎ ‎یک مورد‎ ‎مطالعه‎ ‎در‎ ‎استان‎ ‎فارس‎ ‎است. بنا به یافته‎ ‎ها، ساخت‎ ‎چهار‎ ‎نیروگاه‎ ‎با‎ ‎ظرفیتهای‎ ‎متفاوت‎ ‎در‎ ‎غرب‎ ‎و‎ ‎شرق‎ ‎شیراز،‎ ‎جهرم‎ ‎و‎ ‎کازرون،‎ ‎توجیه‎ ‎پذیر‎ ‎است‎.‎مدل پیشنهادی توانست به میزان 1/2درصدپیش بینی دقیقتری از میزان برق تولیدی ارائه نماید.‏‎ ‎تجزیه‎ ‎و‎ ‎تحلیل‎ ‎حساسیت‎ ‎بر‎ ‎روی‎ ‎پارامترهای‎ ‎روش‎ TH ‎و‎ ‎بر‎ ‎روی‎ ‎تغییر‎ ‎مقادیر‎ ‎تقاضای‎ ‎مشتریان،‎ ‎مطابق پیش‎ ‎بینی‎ ‎ها‎ ‎است.‏‎ ‎نتیجه‎ ‎اینکه‎ ‎مدل‎ ‎پیشنهادی،‎ ‎عملکرد‎ ‎خوبی‎ ‎دارد. و‎ ‎توانسته‎ ‎است‎ ‎با‎ ‎ادغام‎ ‎رویکرد‎ ‎اقتصادی‎ ‎و‎ ‎زیستمحیطی،‎ ‎از‎ ‎نظر‎ ‎هزینه،‎ ‎مقرون‎ ‎به‎ ‎صرفه‎ ‎باشد‎ ‎و در‎ ‎کاهش‎ ‎میزان‎ ‎انتشار گازهای‎ ‎گلخانه‎ ‎ای‎ ‎جذاب‎ ‎باشد‎ ‎وهم‎ ‎اینکه‎ ‎برای‎ ‎ایجاد‎ ‎امنیت‎ ‎و‎ ‎پایداری‎ ‎انرژی،‎ ‎موفق‎ ‎عمل‎ ‎نماید

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Designing a mathematical model of the biomass supply chain to build a power plant despite disruption

نویسندگان [English]

  • davod dehghan 1
  • Kiamars Fathi Hafshejani 2
  • Jalal Haghighat monfared 3

1 Ph.D. student, Department of Industrial Management, Qom Branch, Islamic Azad University, Qom, Iran

2 Assistant Professor, Department of Industrial Management, South Tehran Branch .Islamic Azad University,Tehran, Iran

3 Assistant Professor, Department of Industrial Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran

چکیده [English]

The importance of mass biology has increased due to pollution caused by biomass burial, the profitability of biomass energy, and the demand for energy in the supply chain network. The goal of this research is to design a model for the biomass supply chain network with an economic and ecological approach to reduce costs and carbon emissions. Research gaps have been addressed, which include determining desired and undesired process outputs, along with simultaneously examining material supply disruptions and final product demand. The mathematical model used is a mixed-integer linear programming model. The primary objective is to minimize costs, and the secondary objective is to minimize carbon emissions. To address this in a single-target function under uncertainty, the fuzzy TH mathematical model has been employed. Uncertainty and disruptions have been studied through scenario building. The model's validation includes a case study in Fars province, where the findings justify the construction of four power plants. The proposed model improved the accuracy of electricity production predictions by 2.1 percent. An analysis and sensitivity study was performed on the TH method's parameters and changes in customer demand values according to predictions. The results show that the proposed model performs well, achieving cost-effectiveness through the integration of economic and ecological approaches. It also successfully reduces greenhouse gas emissions, enhances energy security and stability, and demonstrates a positive impact.
Introduction
More than 70 thousand tons of biomass waste are produced in Iran daily. These waste products result in the generation of methane gas and carbon dioxide, leading to severe air pollution and climate changes in the country. Given that 14% of Iran's electricity production comes from hydropower, and the nation is grappling with drought, electricity generation has decreased, leading to government-imposed power cuts, particularly in industrial areas. To address the need for biomass resource investment in energy production, the main challenge is the absence of an optimization model for the biomass supply chain that encompasses all relevant factors. Hence, this research aims to design a flexible optimization model for the biomass supply chain, offering insights to investors on how to produce energy with reduced costs and lower carbon emissions. Key research gaps identified are as follows: 1-Simultaneously addressing uncertainty arising from disruptions in the first two levels of the supply chain, encompassing biomass supply from raw materials, and examining the fourth level - the customer level - by defining scenarios. 2- Innovatively considering capacity levels in the context of the biomass supply chain, a subject not widely explored before. 3- Focusing on the production of bioenergy in conjunction with by-products. 4- Deliberating on the definition of desired outputs at separation centers. 5- Highlighting the importance of considering undesired outputs at separation centers. 6- Proposing a stochastic-probabilistic-fuzzy planning approach to enhance flexibility, particularly in managing risks and operational disruptions.
Research Method
This network encounters two types of uncertainty, both of which cause disruptions. Consequently, four scenarios have been devised to address these disruptions: 1- The scenario involving reduced raw material supply due to drought's impact. 2- The scenario in which electricity demand decreases in response to specific conditions. 3- The scenario where both of the aforementioned scenarios occur simultaneously. 4- A scenario without any disturbances. As a result, a resilient model has been developed to manage disturbances while ensuring environmental sustainability. The proposed model is a mixed-integer linear programming mathematical model with two objective functions: cost minimization and carbon emission minimization. The model is solved using the exact solution method in conjunction with Gomes software. To address function targeting under uncertainty, the fuzzy TH mathematical model has been employed. The model's validation has been examined through a case study in Fars province.
Findings
Several findings have emerged from the study: The construction of four power plants is recommended, each to be located at one of the ten proposed sites, with each having a different capacity. The proposal includes the establishment of four biomass separation centers. Different types of biomass are utilized in the power plants in varying proportions. Biomass transportation involves three types of transporters with capacities of ten tons, fifteen tons, and twenty tons. The quantity of these transporters varies across different separation centers and power plants. Electricity is supplied to six different applicants. The quantity of fertilizer produced varies according to different scenarios and time periods. The sensitivity analysis reveals that increasing the coefficient of the first objective function results in a decrease in the values of the first objective function. Conversely, decreasing the coefficient of the second objective function simultaneously leads to an increase in the value of the second objective function.
Conclusion
The model designed for this purpose is a sustainable development model that encompasses two of the three sustainability aspects, namely, the reduction of greenhouse gas emissions and the minimization of economic costs. Therefore, it is a resilient model that employs a scenario-based approach to address various forms of uncertainty. In the case of this study, raw materials were procured from nine out of ten biomass supply centers, indicating resilience in terms of biomass supply. The model optimally allocates resources among the supply chain members to minimize greenhouse gas emissions while also considering cost-effectiveness. The inclusion of favorable and unfavorable outputs in the model impacts the annual electricity production of each power plant. Without these variables, the model would overestimate electricity production. Sensitivity analysis reveals the trade-off between objective functions, confirming the model's correct and logical performance. Therefore, the model's validity is established. It is recommended that, in further development of this model, specific travel times for trucks between locations be included in the model.

کلیدواژه‌ها [English]

  • Biomass supply chain network
  • probabilistic programming
  • fuzzy theory
  • mathematical programming
  1. Aranguren Maria, K.Castillo-Villar Krystel, Aboytes-Ojeda Mario (2021). A two-stage stochastic model for co-firing biomass supply chain networks. Journal of Cleaner Production.
  2. Awudu I, Zhang J (2012) Uncertainties and sustainability concepts in biofuel supply chain management: a review. Renew Sustain Energy Rev 16:1359–1368
  3. Azadeh A, Arani HV (2016) Biodiesel supply chain optimization via a hybrid system dynamics-mathematical programming approach. Renew Energy 93:383–403
  4. Azadeh A, Arani HV, Dashti H (2014) A stochastic programming approach towards optimization of biofuel supply chain. Energy 76:513–525
  5. Akgül, A., & Seçkiner, S. U. (2019). Optimization of biomass to bioenergy supply chain with tri-generation and district heating and cooling network systems. Computers & Industrial Engineering137, 106017.
  6. Badri, H., Bashiri, M., Hejazi, T.H. (2013). Integrated strategic and tactical planning in a supply chain network design with a heuristic solution method, Computers & Operations Research, 40, 1143–1154
  7. Bai Y, Li X, Peng F, Wang X, Ouyang Y (2015) Efects of disruption risks on biorefnery location design. Energies 8:1468–1486
  8. Cyplik Piotr, Zwolak Mateusz (2022). Industry 4.0 and 3d Print: A New Heuristic Approach for Decoupling Point in Future Supply Chain Management.
  9. Condori, Bruno. Hijmans, Robert J. Quiroz, Roberto. Ledent, Jean-François (2010). Quantifying the expression of potato genetic diversity in the high Andes through growth analysis and modeling. Field Crops Research. 135-144
  10. Fahimnia B, Jabbarzadeh A (2016) Marrying supply chain sustainability and resilience: a match made in heaven. Transp Res E Logist Transp Rev 91:306–324
  11. Fattahi M, Govindan K (2018) A multi-stage stochastic program for the sustainable design of biofuel supply chain networks under biomass supply uncertainty and disruption risk: a real-life case study. Transp Res E Logist Transp Rev 118:534–567
  12. Ghaderi H, Pishvaee MS, Moini A (2016) Biomass supply chain network design: an optimization-oriented review and analysis. Ind Crops Prod 94:972–1000
  13. Govindan, K., Nosrati-Abarghooee, S., Nasiri, M. M., & Jolai, F. (2022). Green reverse logistics network design for medical waste management: A circular economy transition through case approach. Journal of Environmental Management, 322, 115888.
  14. Changqiang, Hu. Hao, Wang.Shaowen,.Rodriguez. Luis F, Ting. K.C, Lina.Tao (2022). Multiperiod stochastic programming for biomass supply chain design under spatiotemporal variability of feedstock supply.
  15. ghazavi, S., habib, F., & Nahibi, S. (2021). Environmental Design of Civic Wastes Location, with Emphasis on Ecological Landscape Design (Case study: Kahrizak landfill of Tehran). Journal of Environmental Science and Technology, 23(2), 101-116. doi: 10.22034/jest.2019.47021.4809
  16. Lee Yuen Lo Shirleen, Shen How Bing, Yong Teng Sin, Loong Lam Hon, Hsion Lim Chun, Rhamdhani Muhammad Akbar, Sunarso Jaka(2021). Stochastic techno-economic evaluation model for biomass supply chain: A biomass gasification case study with supply chain uncertainties.
  17. Mousavi Ahranjani. Parisa, Ghaderi.Seyed Farid, Azadeh. Ali, Babazadeh. Reza. (2020). Robust design of a sustainable and resilient bioethanol supply chain under operational and disruption risks Clean Technologies and Environmental Policy https://doi.org/10.1007/s10098-019-01773-2
  18. Marufuzzaman M, Ekşioğlu SD (2016) Designing a reliable and dynamic multimodal transportation network for biofuel supply chains. Transp Sci 51:494–517
  19. Mohseni, S., & Pishvaee, M. S. (2020). Data-driven robust optimization for wastewater sludge-to-biodiesel supply chain design. Computers & Industrial Engineering139, 105944.
  20. Nasiri, Mohammad Mahdi. Mousavi, Hossein. Nosrati-Abarghooee, Saeede (2023). A green location-inventory-routing optimization model with simultaneous pickup and delivery under disruption risks. Decision Analytics Journal.org/10.1016/j.dajour.2023.100161
  21. Osmani A, Zhang J (2017) Multi-period stochastic optimization of a sustainable multi-feedstock second generation bioethanol supply chain—a logistic case study in Midwestern United States. Land Use Policy 61:420–450
  22. Pérez ATE, Camargo M, Rincón PCN, Marchant MA (2017) Key challenges and requirements for sustainable and industrialized biorefnery supply chain design and management: a bibliographic analysis. Renew Sustain Energy Rev 69:350–359
  23. Poudel SR, Marufuzzaman M, Bian L (2016) Designing a reliable biofuel supply chain network considering link failure probabilities. Comput Ind Eng 91:85–99
  24. Ponomarov, Serhiy Y., and Mary C. Holcomb, (2009). "Understanding the concept of supply chain resilience . The International Journal of Logistics Management 20(1), 124 -143.
  25. Somaie, Zare Mehrjerdi. Yahia, Sadegheih. Ahmad, Hosseini-Nasab. Hasan. (2022). Designing a resilient and sustainable biomass supply chain network through the optimization approach under uncertainty and the disruption. Journal of Cleaner Production.
  26. Syahira Mohd Yahya Nur, Yin Ng Lik, Andiappan Viknesh. (2021). Optimisation and planning of biomass supply chain for new and existing power plants based on carbon reduction targets. Energy.
  27. Mahsa, Ghaderi. Hadi, Soleimani. Hamed. (2020). Design and optimization of biomass electricity supply chain with uncertainty in material quality, availability and market demand. Energy
  28. Torabi, S.A., Hassini, E., (2008). “An interactive possibilistic programming approach for multiple objective supply chain master planning”, Fuzzy Sets and Systems, 159(2): 193-214.
  29. Toba, Ange-Lionel, Rajiv Paudel, Yingqian Lin, Rohit V. Mendadhala, and Damon S. Hartley. 2023. "Integrated Land Suitability Assessment for Depots Siting in a Sustainable Biomass Supply Chain" Sensors23, no. 5: 2421. https://doi.org/10.3390/s23052421
  30. Tavana, M., Tohidi, H., Alimohammadi, M., & Lesansalmasi, R. (2021). A location-inventory-routing model for green supply chains with low-carbon emissions under uncertainty. Environmental Science and Pollution Research, 28, 50636-50648
  31. Umakanth, A. V., Datta, A., Reddy, B. S., & Bardhan, S. (2022). Biomass feedstocks for advanced biofuels: Sustainability and supply chain management. Advanced Biofuel Technologies, 39-72.
  32. Veland,S.,Howitt, R.,Dominey-Howes, D., Thomalla, F.,& Houston,D. (2013). Procedural vulnerability: Understanding environmental change in a remote indigenous community. Global Environmental Change, 23(1), 314-326.
  33. Zailan Roziah, Shiun Lim Jeng, Abdul Manan Zainuddin, Rafidah Wan Alwi Sharifah, Mohammadi-ivatloo Behnam, Jamaluddin Khairulnadzmi (2021). Renewable and Sustainable Energy Reviews
  34. Zand Atashbar, N., Labadie, N., Prins, C., 2018. Modelling and optimisation of biomass supply chains: a review. J. Prod. Res. 56, 3482–3506
  35. Zarrat Dakhely Parast, Z., Haleh, H., Avakh Darestani, S., & Amin-Tahmasbi, H. (2021). Green reverse supply chain network design considering location-routing-inventory decisions with simultaneous pickup and delivery. Environmental Science and Pollution Research, 1-22.