Document Type : Research Paper

Authors

Abstract

Models presented in inventory management, encompass varied parameters. Primary factor in classic models related to determination of the economical ordering quantity (EOQ) and the economical production quantity (EPQ), is to consider parameters like the setup cost, the holding cost and the demand rate, to be fixed. This characteristic leads to a great difference among the quantity of the economical ordering obtained in classic models and real-word conditions. For instance, It should be stated that not only the holding costs of spoiled and useless products are not always fixed, but also, they would be increased by passing time. This article is an attempt to develop classical EOQ and EPQ models by considering holding and purchasing cost as an increasing continuous function of the ordering cycle time. Due to the complexity of the considered problem, two meta-heuristic algorithms, including Non-dominated Sorting Genetic Algorithm (NSGA-II) and Multi-objective Particle Swarm Optimization (MOPSO) are developed. Optimizing service level is considered as one of main apprehension in management science, that’s why increasing service level optimization would be evaluated as the second objective. As the performance of meta-heuristic algorithms is significantly influenced by calibrating their parameters, Taguchi methodology has been used to tune the parameters of the developed algorithms

Keywords

[ دب، کالیمونی، الگوریتم­های ژنتیک با رویکرد بهینه­یابی چندهدفه، ترجمه جعفر رضایی و منصور  داوودی منفرد، تهران: انتشارات پلک، 1387، چ اول.
[2]    Padmanabhan,  G.,  Vart,  P.,(1990),  Analysis  of  multi-item  inventory  systems under resource  constraints:  A  non-linear  goal  programming  approach, engineering costs and production economics 20 , 121-127.
 [3]  Agrell,    P.J.,(1995),  A    multicriteria    framework    for    inventory    control, International Journal of Production Economics 41, 59-70.
 [4]    Roy, T., Maiti, M.,(1998), Multi-objective inventory models of deteriorating items with some   constraints   in   fuzzy   environment,  computers   operations research 25(12),1085-1095.
 [5]   Belgasmi,  N.,  Ben  Saïd,  L.,  &  Ghédira,  K.,(2008),  Evolutionary  multiobjective optimization of  the  multi-location  transshipment  problem,  Operational  Research8(2) , 167-183.
 [6] Tsou,   C.S.,(2008),  Multi-objective   inventory   planning   using   MOPSO   and TOPSIS , Expert systems with applications 35, 136-142.
 [7]  Tsou,   C.S.,(2009),  Evolutionary   pareto   optimizers   for   continuous   review stochastic inventory systems, European journal of operation research 195, 364-371.
[8] Hadley, G., Whitin, T.M., (1975), An optimal final inventory model, Prentic Hall.
[9] Pan, C.H., Lo, M.C., Hsiao.Y.C.,(2004), optimal reorder point inventory models with variable lead time and backorder discount considerations, Europen Journal of Operational Research, 158, 488-505
[10] Sphicas, G.p., (2006), EOQ and EPQ with linear and fixed backorder costs: two cases identified and models analyzed without calculus, Int. J. Production Economiccs, 100, 59-64
[11] Goh, M.,(1992), Some results for inventory models having inventory level dependent demand rate, International Journal of Operational Economiccs, 27(1), 155-160
 [12] Girin, B.C., Goswami, A., Chaudhuri, K.s., (1996), An EOQ model for deteriorating items with time-varying demand and costs, Journal of Operational Research Society, 47(11), 1398-1405
 [13] Darwish, M.A., (2008), EPQ models with varying setup cost. Int. J. Production Economiccs, 113 ,297-306
 [14] Ghasemi, N., Afshar Nadjaf, B.,(2013), EOQ Models with Varying Holding Cost , Industrial Mathematics, 7.
[15]  Ghasemi, N.,(2015), Developing EPQ models for non-instantaneous deteriorating items,J Ind Eng Int, 11,427-437.