Document Type : Research Paper
Authors
Abstract
There are several different factors in industrial processes, which may have an impact on final product specifications. In this paper, the nonlinear multi-objective mathematical modeling for the 5 qualitative characteristics of polyethylene terephthalate (PET) as one of the most widely used products in petrochemical industry is done by 9 Key parameters affecting the production process. For this purpose, Response Surface Methodology that is the combination of experiments design and statistical tests is applied along with Artificial Neural Network and Metaheuristic algorithms.
Keywords
آزمایشها با رویکرد روشهای رویه پاسخ ،مرکهز انتشهارات علمه ی دانشهگاه آزاد اسهلام ی قهزو ین،
.7833
. منهاج، محمدباقر ، هوش محاسباتی؛ مبانی شبکه های عصبی ،مرکز نشر دانشگاه امیرکبیر، 7814
یقینی، مسعود و محمد رحیم اخوان کاظم زاده، الگوریتم های بهینه سازی فراابتکاری ،انتشهارات
. جهاد دانشگاهی واحد صنعتی امیرکبیر، 7841
جلالی نائینی، سید غلامرضا، میثم جعفری اسکندری و حامد نهویری، بهینهه سهازی مهندسهی بها
. تکیه بر روش های فراابتکاری ،انتشارات موسسه فرهنگی هنری دیباگران تهران، 7847
Krose, B. and Smagt, P., An introduction to neural networks, The University of Amsterdam, 1996.
Montgomery, D.C., Design and Analysis of Experiments, New York: John Wiley & Sons, 2005.
Khuri, AI, JA. Cornell, Response Surfaces, New York: Dekker, 1996.
Nogueira, André L., Liliane M. F. Lona, RicardoA. F. Machado, Continuous polymerization in tubular reactors with prepolymerization: Analysis using two-dimensional phenomenological model and hybrid model with neural networks, Journal of Applied Polymer Science, Volume 91, January 2004.
Nasouri, Komeil, Hossein Bahrambeygi, Amir Rabbi, Ahmad Mousavi Shoushtari, Ali Kaflou, Modeling and optimization of electros pun PAN nan fiber diameter using response surface methodology and artificial neural networks, Journal of Applied Polymer Science, Volume 126, October 2012.
Mirzaei, Esmaeil, Amir Amani, Saeed Sarkar, Reza Saber, Dariush Mohammadyani, Reza Faridi-Majidi, Artificial neural networks
07 مطالعات مدیریت صنعتی، سال سیزدهم، شماره 83 ، پاییز 49
modeling of electrospinning of polyethylene oxide from aqueous acid acetic solution, Journal of Applied Polymer Science, Volume 125, August 2012.
GiriDev, Venkateshwarapuram Rengaswami, Jayarama Reddy Venugopal, Muthusamy Senthilkumar, Deepika Gupta, Seeram Ramakrishna, Prediction of water retention capacity of hydrolysed
electrospun polyacrylonitrile fibers using statistical model and artificial neural network, Journal of Applied Polymer Science, Volume 113 ,September 2009.
Delfa, Gerardo Martínez, Carlos E. Boschetti, Optimization of the chain transfer agent incremental addition in SBR emulsion polymerization, Journal of Applied Polymer Science, Volume 124, May 2012.
Lopez-Molinero, Angel, PilarCalatayud, Daniel Sipiera, Raquel Falcon, David Liñan, Juan Ramon Castillo, Determination of antimony in poly(ethylene terephthalate) by volatile bromide generation flame atomic absorption spectrometry, MicrochimicaActa, Volume 158, May 2007.
Sresungsuwan, Natsupa, NanthiyaHansupalak, Prediction of mechanical properties of compatibilized styrene/natural-rubber blend by using reaction conditions: Central composite design vs. artificial neural networks, Journal of Applied Polymer Science, Volume 127, May 2013.
Talbi, El-Ghazali., Metaheuristics: From Design to Implementation, John Wiley and sons, 2009.
Zaknich, A., Neural Networks for Intelligent Signal Processing, New Jersey: World Scientific publishing, 2003.