Document Type : Research Paper


1 Institute for Trade Studies and Research, Tehran, Iran

2 Industrial Management M.A., Allameh Tabatabaei University, Tehran, Iran


Master production scheduling is a midterm phase in planning which translates the long term aggregate production planning to a plan which determines the scheduling and magnitude of different products production. This problem requires investigating a wide range of parameters about demand, manufacturing resource usage and costs. Uncertainty is an intrinsic characteristic of these parameters. In this paper, a model is developed for master production scheduling under uncertainty where demands are considered as stochastic variables, while cost and utilization parameters are expressed as fuzzy numbers. A hybrid approach is also proposed to solve the extended model. The application of the proposed method is examined in a numerical example.


آذر، عادل، فرهی بیلویی، رضا و رجب‌زاده، علی. (1387)، مقایسه تطبیقی مدلهای ریاضی قطعی و فازی در برنامه‌ریزی تولی: "مورد: شرکت پالایش نفت شیراز". فصلنامه علمی و پژوهشی مدرس علوم انسانی، سال 12، شماره 1، پیاپی 56، 33-54.
ربانی، مسعود، سادات حسینی، نیلوفر و معنوی‌زاده، ندا. (1392)، رویکرد بهینه سازی استوار در مسئله برنامه ریزی تولید با در نظر گرفتن دوباره کاری، کمبود و خرابی ناگهانی ماشین ها با شرایط نبود قطعیت: استفاده از یک روش تکاملی. نشریه مهندسی صنایع، سال 47، شماره 1، 25-37.
عباسی، مرتضی، هوشمند، محمود و اخوان نیاکی، سید تقی. (1388)، برنامه‌ریزی تولید در سیستم تولید یوسته با تقاضای غیر قطعی با هدف بیشینه‌سازی تطابق تولید با تقاضا. مجله شریف، شماره 49، 3-14.
مهرگان، محمدرضا، کاظمی، عالیه و کامیاب مقدس، امین. (1385)، طراحی مدل آرمانی برنامه‌ریزی تولید برای شرکت کابل‌های مخابراتی شهید قندی یزد. دانش مدیریت، سال 19، شماره 74، 133-147.
Ballestin, F., Mallor, F. & Mateo, P.M. (2012). Production scheduling in a market-driven foundry: a mathematical programming approach versus a project scheduling metaheuristic algorithm. Engineering and Optimization, Vol. 13, Issue 4, pp. 663-687.
Cox, J.F. & Blackstone, J.H. (2001). APICS Dictionary. Virginia: APICS, 2001.
Feng, K., Rao, U.S. & Raturi, A. (2011). Setting planned orders in master production scheduling under demand uncertainty. International Journal of Production Research, Vol. 49, No. 13, pp. 4007-4025.
Fleten S.E. & Kristoffersen T.K. (2008). Short-term hydropower production planning by stochastic programming. Computers & Operations Research, Vol. 35, Issue 8, pp. 2656-2671.
Heilpern, S. (1992). The expected valued of a fuzzy number. Fuzzy Sets and Systems,Vol. 47, Issue 1, pp. 81-86.
Higgins, P. & Browne, J. (1992). Master production scheduling: a concurrent planning approach. Production Planning & Control, Vol. 3, Issue 1, pp. 2–18.
Houghton, E. & Portugal, V. (2001). Optimum production planning: an analytic framework. International Journal of Operations & Production Management, Vol. 21, Issue 9,pp. 1205-1221.
Jimenez, M. (1996). Ranking fuzzy numbers through the comparison of its expected intervals. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, Vol. 4, Issue 4, pp. 379-388.
Jimenez, M., Arenas, M., Bilbao, A. & Rodriguez, M.V. (2007). Linear programming with fuzzy parameters: an interactive method resolution. European Journal of Operational Research, Vol. 177, Issue 3, pp. 1599-1609.
Kaufmann, A. & Gupta, M.M. (1991).Introduction to Fuzzy Arithmetic: Theory and Applications. New York: Van Nostrand Reinhold.
Kelbel, J. & Hanzalek, Z. (2011). Solving production scheduling with earliness/ tardiness penalties by constraint programming. Journal of Intelligent Manufacturing, Vol. 22, Issue 4, pp. 553-562.
Linag, T.F. (2008). Fuzzy multi-objective production/ distribution planning decisions with multi-product and multi-time period in supply chain. Computers & Industrial Engineering, Vol. 55, Issue 3, pp. 676-694.
Mula, J., Poler, R., Garcia-Sabater, J.P. & Lario, F.C. (2006). Models for production planning under uncertainty: a review. International Journal of Production Economics, Vol. 103, Issue 1,pp. 271-285.
Sawik, T. (2007). Multi-objective master production scheduling in make-to-order manufacturing. International Journal of Production Research, Vol. 45, Issue 12, pp. 2629-2653.
Soares, M.M. & Vieira, G.E. (2009). A new multi-objective optimization method for master production scheduling problems based on genetic algorithm. The International Journal of Advanced Manufacturing Technology, Vol. 41, Issue 5-6,pp. 549-567.
Supriyanto, I. & Noche, B. (2011). Fuzzy Multi-Objective Linear Programming and Simulation Approach to the Development of Valid and Realistic Master Production Schedule. Logistics Journal: Proceeding, Vol. 7, pp. 1-14.
Tang, O. &Grubbstrom, R.W. (2002). Planning and replanning the master production schedule under demand uncertainty. International Journal of Production Economics, Vol. 78, Issue3, pp. 323-334.
Traub, J.F. & Werschulz, A.G. (1998). Complexity and Information. Roma: AcademiaNazionale Dei Lincei.
Vasant, P.M. (2003). Application of fuzzy linear programming in production planning. Fuzzy Optimization and Decision Making, Vol. 2, Issue 3, pp. 229-241.
Vieira, G.E. & Ribas, P.C. (2003). A new multi-objective optimization method for master production scheduling problems using simulated annealing. International Journal of Production Research, Vol. 42, Issue 21, pp. 4609-4622.
Vieira G.E., Favaretto, F. & Ribas, P.C. (2003). Comparing genetic algorithms and simulated annealing in master production scheduling problems. In 17thInternational Conference on Production Research proceedings, Blacksburg, Virginia, USA.
Wang, H.F. & Wu, K.Y. (2003). Modeling and analysis for multi-period, multi-product and multi-resource production scheduling. Journal of Intelligent Manufacturing, Vol. 14, Issue 3-4,pp. 297-309.
Zadeh, L. (1965). Fuzzy sets. Information and Control, Vol. 8, Issue 3, pp. 338–353.