نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت صنعتی، دانشکده مدیریت و حسابداری، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران،

2 دانشیار مدیریت صنعتی، دانشکده مدیریت و حسابداری، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران.

3 استادیار مهندسی صنایع، دانشکده مهندسی صنایع و مکانیک، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران،

4 استادمدیریت صنعتی و فناوری اطلاعات، دانشکده مدیریت و حسابداری، دانشگاه شهید بهشتی، تهران، ایران،

چکیده

نگهداری و تعمیرات سهم قابل توجهی از هزینه‎های زنجیره‎های تامین و سیستم‎های تولیدی را شامل می‎شود. امروزه با رشد تکنولوژی های مبتنی بر فناوری اطلاعات سیستم‎های هوشمند نت نیز بسیار در عرصه بین‎المللی در حال گسترش می‎باشد. در این تحقیق به توسعه یکی از روش‎های نوین نگهداری و تعمیرات مبتنی بر پایایی که در آن یک سامانه هوشمند به تعیین تعمیر یا تعویض بر اساس سطح پایایی سیستم می‎پردازد در مسئله بسیار پر کاربرد کارکارگاهی منعطف خواهیم پرداخت. بعلاوه با توجه اهمیت تولید سبز، در مسئله تصمیم‎گیری توسعه داده شده انرژی مصرفی در کنار دو تابع هدف هزینه‎های تولید و پایایی سیستم به توازن می‎رسد. در توسعه نوآوری تحقیق، همانند مدل‎های محاسباتی وزارت نیرو در مدل محاسبه انرژی توجه به مناطق کمتر توسعه داده شده هم به عنوان یک عامل اجتماعی در نظرگرفته شده است. بعلاوه پایایی توسعه داده شده برای سیستمی پیچیده شامل چندین ماشین با عمر تجهیزات وابسته به زمان با قابلیت تعمیرپذیری می‎باشد و در آن مدت زمان انجام عمل‎ها، زمان نگهداری و تعمیرات و سطح پایایی پس از تعمیرآن‎ها همگی تصادفی می‎باشند. سپس مدل توسعه داده شده توسط الگوریتم‎های فراابتکاری مناسب‎سازی شده با رویکرد بهینه‎سازی مبتنی بر شبیه‎سازی حل شده و جواب‎های بدست آمده به وسیله روش‎های آماری و غیرآماری تحلیل شده‎اند. تحلیل محاسباتی نتایج بدست آمده حاکی ازکارا بودن الگوریتم‎های حل برای مسئله پیچیده چندهدفه قویا تصادفی می‎باشد که می‎توانند به عنوان یک سیستم پشتیبان تصمیم در دست توسعه دهندگان نرم افزار در این حوزه قرار گیرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Intelligent Energy Consumption Optimization in Flexible Job Shop Scheduling Considering Reliability-Centered Maintenance (RCM)

نویسندگان [English]

  • mohammad hasan sadeghpour 1
  • Ali Mohtashami 2
  • Seyed Habibolah Rahmati 3
  • Mostafa Zandieh 4

1 Doctoral student, Department of Industrial Management, Faculty of Management and Accounting, Qazvin Branch, Islamic Azad University, Qazvin, Iran.

2 Associate Professor of Industrial Management, Faculty of Management and Accounting, Qazvin Branch, Islamic Azad University, Qazvin, Iran

3 Assistant Professor of Industrial Engineering, Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran.

4 Professor of Industrial Management and Information Technology, Faculty of Management and Accounting, Shahid Beheshti University, Tehran, Iran.

چکیده [English]

Maintenance is a significant cost factor in supply chains and production systems. Intelligent maintenance systems are gaining global interest with the rise of IT-based technologies. This study focuses on a new reliability-centered maintenance (RCM) method, where an intelligent system decides on repair or replacement based on system reliability in the practical flexible job shop scheduling problem (FJSP). The research introduces a balance by integrating industrial units' green production and energy consumption with traditional objectives like production costs and system reliability in a multi-objective framework. Another key aspect is the consideration of less developed regions as a social factor in the energy calculation model, resembling the Ministry of Energy's computational models. The reliability model is tailored for a complex system with multiple machines having time-dependent lifespans and repair probabilities, where operation times, maintenance times, and post-repair reliability levels are all stochastic. Metaheuristic algorithms combined with simulation-based optimization are used to solve the model. Statistical and non-statistical methods are used to depict the performance of the algorithms. The study shows that these algorithms effectively solve complex multi-objective stochastic problems and can be considered as a decision support system (DSS) for software developers working on real-world applications.

کلیدواژه‌ها [English]

  • Maintenance System Prediction
  • RCM
  • Stochastic
  • Simulation-Based Optimization
  • Flexible Jobshop
  • Metaheuristic Algorithm
  1. خانی، امیرمحمد، کزازی، ابوالفضل، بیرامی، ثریا. (1401). مدل‌سازی ساختاری بر مبنای مدیریت زنجیره‌تأمین در رابطه با مدیریت کیفیت جامع، نگهداری و تعمیرات بهره‌ور فراگیر، سازمان یادگیرنده و عملکرد عملیاتی.مطالعات مدیریت صنعتی20(65), 39-84. https://doi.org/10.22054/jims.2022.62763.2688
  2. رحمتی، سید حبیب‌الله، زندیه، مصطفی. (1391). توسعه دو الگوریتم چند هدفه برای حل مسئله چند هدفه زمان‌بندی کارگاهی منعطف با در نظر گرفتن توان مصرفی ماهانه.مطالعات مدیریت صنعتی، 10(27), 118-143. https://jims.atu.ac.ir/article_1905.html
  3. ساجدی نژاد، آرمان، & لطفی، میثم. (1398). مدلی برای بهینه‌سازی زمانبندی نگهداری و تعمیرات پیشگیرانه برای سیستم‌های چند جزیی با استفاده از الگوریتم ژنتیک. مطالعات مدیریت صنعتی,17(55), 137-160. https://doi.org/10.22054/‌jims.2019.15312.1543.
  4. علی حاج‌شیرمحمدی. (2005). برنامه‌ریزی نگهداری و تعمیرات (مدیریت فنی). انتشارات غزل
  5. Ahmadi, R., Castro, I. T., & Bautista, L. (2024). Reliability modeling and maintenance planning for a parallel system with respect to the state-dependent mean residual time. In Journal of the Operational Research Society (Vol. 75, Issue 2, pp. 297–313). https://doi.org/10.1080/01605682.2023.2194316
  6. Alkabaa, A. S., Taylan, O., Guloglu, B., Baik, S., Sharma, V., Mishra, R., Alharbi, R., & Upreti, G. (2024). A fuzzy ANP-based criticality analyses approach of reliability-centered maintenance for CNC lathe machine components. In Journal of Radiation Research and Applied Sciences (Vol. 17, Issue 1, p. 100738). https://doi.org/10.1016/j.jrras.2023.100738
  7. Azevedo, R. V., Moura, M. das C., Lins, I. D., & Droguett, E. L. (2020). A multi-objective approach for solving a replacement policy problem for equipment subject to imperfect repairs. Applied Mathematical Modelling, 86, 1–19. https://doi.org/10.1016/j.apm.2020.04.007
  8. Børresen, C. S. (2011). A framework for cost-benefit analysis on use of condition based maintenance in an IO perspective. Norges teknisk-naturvitenskapelige universitet, Fakultet for …. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-15498
  9. Cao, R., Coit, D. W., Hou, W., & Yang, Y. (2020). Game theory based solution selection for multi-objective redundancy allocation in interval-valued problem parameters. Reliability Engineering and System Safety, 199. https://doi.org/10.1016/j.ress.2020.106932
  10. Cheng, G., & Li, L. (2020). Joint optimization of production, quality control and maintenance for serial-parallel multistage production systems. Reliability Engineering and System Safety, 204. https://doi.org/10.1016/j.ress.2020.107146
  11. Dhillon, B. S. (2011). Design Reliability Fundamentals and Applications by B.S. Dhillon. In Economist ISBN 9781032180212. (Vol. 398, Issue 8716).
  12. Duffuaa, S. O., Ben-Daya, M., Al-Sultan, K. S., & Andijani, A. A. (2001). A generic conceptual simulation model for maintenance systems. Journal of Quality in Maintenance Engineering, 7(3), 207–219. https://doi.org/10.1108/13552510110404512
  13. Ebrahimipour, V., Najjarbashi, A., & Sheikhalishahi, M. (2015). Multi-objective modeling for preventive maintenance scheduling in a multiple production line. Journal of Intelligent Manufacturing, 26(1), 111–122. https://doi.org/10.1007/s10845-013-0766-6
  14. Ekpenyong, M. E., & Udoh, N. S. (2024). Intelligent optimal preventive replacement maintenance policy for non-repairable systems. In Computers and Industrial Engineering (Vol. 190). https://doi.org/10.1016/j.cie.2024.110091
  15. El Khoukhi, F., Boukachour, J., & El Hilali Alaoui, A. (2017). The “Dual-Ants Colony”: A novel hybrid approach for the flexible job shop scheduling problem with preventive maintenance. Computers and Industrial Engineering, 106, 236–255. https://doi.org/10.1016/j.cie.2016.10.019
  16. Fuentes-Huerta, M. A., González-González, D. S., Cantú-Sifuentes, M., & Praga-Alejo, R. J. (2021). Fuzzy reliability centered maintenance considering personnel experience and only censored data. Computers and Industrial Engineering, 158(April), 1–6. https://doi.org/10.1016/j.cie.2021.107440
  17. Hien, N. N., Lasa, G., Iriarte, I., & Unamuno, G. (2022). An overview of Industry 4.0 Applications for Advanced Maintenance Services. Procedia Computer Science, 200, 803–810. https://doi.org/10.1016/j.procs.2022.01.277
  18. Higgins, L. R., & Mobley, R. K. (2002). Maintenance Engineering Handbook, Sixth Edition.
  19. Lu, X. Q., Yan, H. F., Su, Z. L., Zhang, M. X., Yang, X. H., & Ling, H. F. (2021). Metaheuristics for homogeneous and heterogeneous machine utilization planning under reliability-centered maintenance. Computers and Industrial Engineering, 151, 106934. https://doi.org/10.1016/j.cie.2020.106934
  20. Ma, X., Liu, B., Yang, L., Peng, R., & Zhang, X. (2020). Reliability analysis and condition-based maintenance optimization for a warm standby cooling system. Reliability Engineering and System Safety, 193, 106588. https://doi.org/10.1016/j.ress.2019.106588
  21. Mobley, R. K. (2002). Introduction to Predictive Maintenance. In Elsevier Science (USA). ISBN 0-7506-7531-4
  22. Modibbo, U. M., Arshad, M., Abdalghani, O., & Ali, I. (2021). Optimization and estimation in system reliability allocation problem. Reliability Engineering and System Safety, 212, 107620. https://doi.org/10.1016/j.ress.2021.107620
  23. Moubray, 1997. (1997).. Reliability-Centered Maintenance. 2nd ed.. In Elsevier Science (USA), 223p. ISBN 0-8311-3078-4
  24. Nahas, N., Nourelfath, M., & Ait-Kadi, D. (2007). Coupling ant colony and the degraded ceiling algorithm for the redundancy allocation problem of series-parallel systems. Reliability Engineering and System Safety, 92(2), 211–222. https://doi.org/10.1016/j.ress.2005.12.002
  25. NASA, R. (2008). Guide reliability: Centered maintenance guide for facilities and collateral equipment. Aeronautics and SA NASA, Eds.
  26. Ozturkoglu, Y., & Bulfin, R. L. (2011). A unique integer mathematical model for scheduling deteriorating jobs with rate-modifying activities on a single machine. International Journal of Advanced Manufacturing Technology, 57(5–8), 753–762. https://doi.org/10.1007/s00170-011-3303-9
  27. Piechnicki, F., Dos Santos, C. F., De Freitas Rocha Loures, E., & Dos Santos, E. A. P. (2021). Data fusion framework for decision-making support in reliability-centered maintenance. Journal of Industrial and Production Engineering, 38(1), 1–17. https://doi.org/10.1080/21681015.2020.1817164
  28. Rahmati, S. H. A., Ahmadi, A., & Karimi, B. (2018a). Developing simulation-based optimization mechanism for a novel stochastic reliability centered maintenance problem. Scientia Iranica, 25(5E), 2788–2806. https://doi.org/10.24200/sci.2017.4461
  29. Rahmati, S. H. A., Ahmadi, A., & Karimi, B. (2018b). Multi-objective evolutionary simulation-based optimization mechanism for a novel stochastic reliability centered maintenance problem. Swarm and Evolutionary Computation, 40, 255–271. https://doi.org/10.1016/j.swevo.2018.02.010
  30. Sadjadi, S. J., & Soltani, R. (2015). Minimum-Maximum regret redundancy allocation with the choice of redundancy strategy and multiple choice of component type under uncertainty. Computers and Industrial Engineering, 79, 204–213. https://doi.org/10.1016/j.cie.2014.10.021
  31. Sadjadi, S. J., Tofigh, A. A., & Soltani, R. (2014). A new nonlinear multi-objective redundancy allocation model with the choice of redundancy strategy solved by compromise programming approach. International Journal of Engineering, Transactions A: Basics, 27(4), 545–552. https://doi.org/10.5829/idosi.ije.2014.27.04a.05
  32. Safari, E., & Sadjadi, S. J. (2011). A hybrid method for flowshops scheduling with condition-based maintenance constraint and machines breakdown. Expert Systems with Applications, 38(3), 2020–2029. https://doi.org/10.1016/j.eswa.2010.07.138
  33. Sakib, N., & Wuest, T. (2018). Challenges and Opportunities of Condition-based Predictive Maintenance: A Review. Procedia CIRP, 78, 267–272. https://doi.org/10.1016/j.procir.2018.08.318
  34. Shen, J., & Zhu, K. (2018). An uncertain single machine scheduling problem with periodic maintenance. Knowledge-Based Systems, 144, 32–41. https://doi.org/10.1016/j.knosys.2017.12.021
  35. Shen, J., & Zhu, Y. (2019). A parallel-machine scheduling problem with periodic maintenance under uncertainty. Journal of Ambient Intelligence and Humanized Computing, 10(8), 3171–3179. https://doi.org/10.1007/s12652-018-1032-8
  36. Shin, J. H., & Jun, H. B. (2015). On condition based maintenance policy. Journal of Computational Design and Engineering, 2(2), 119–127. https://doi.org/10.1016/j.jcde.2014.12.006
  37. Sielaff, L., Lucke, D., & Sauer, A. (2023). Evaluation of a production system’s technical availability and maintenance cost–development of requirements and literature review. In International Journal of Computer Integrated Manufacturing (Vol. 36, Issue 12, pp. 1801–1822). https://doi.org/10.1080/0951192X.2023.2177739
  38. Siswantoro, N., Zaman, M. B., Fahreza, F., Priyanta, D., Pitana, T., Prastowo, H., Wicaksana, A., & Fauzi, H. N. (2022). A Case Study Maintenance Task Allocation Analysis on Marine Loading Arm Using Reliability Centered Maintenance. IOP Conference Series: Earth and Environmental Science, 972(1). https://doi.org/10.1088/1755-1315/972/1/012032
  39. Soltani, R., & Sadjadi, S. J. (2014). Reliability optimization through robust redundancy allocation models with choice of component type under fuzziness. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 228(5), 449–459. https://doi.org/10.1177/1748006X14527075
  40. Soltani, R., Sadjadi, S. J., & Tofigh, A. A. (2014). A model to enhance the reliability of the serial parallel systems with component mixing. Applied Mathematical Modelling, 38(3), 1064–1076. https://doi.org/10.1016/j.apm.2013.07.035
  41. Xu, Y., Cai, Y., & Song, L. (2023). Condition Assessment of Nuclear Power Plant Equipment Based on Machine Learning Methods: A Review. In Nuclear Technology (Vol. 209, Issue 7, pp. 929–962). https://doi.org/10.1080/00295450.2023.2169042
  42. Yang, X., He, Y., Liao, R., Cai, Y., & Dai, W. (2024). Mission reliability-centered opportunistic maintenance approach for multistate manufacturing systems. In Reliability Engineering and System Safety (Vol. 241). https://doi.org/10.1016/j.ress.2023.109693
  43. Ye, H., Wang, X., & Liu, K. (2021). Adaptive Preventive Maintenance for Flow Shop Scheduling with Resumable Processing. IEEE Transactions on Automation Science and Engineering, 18(1), 106–113. https://doi.org/10.1109/TASE.2020.2978890
  44. Zhou, L., Jiang, Z., Geng, N., Niu, Y., Cui, F., Liu, K., & Qi, N. (2022). Production and operations management for intelligent manufacturing: a systematic literature review. International Journal of Production Research, 60(2), 808–846. https://doi.org/10.1080/00207543.2021.2017055