نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مدیریت صنعتی، گروه مدیریت تولید و عملیات، دانشکده مدیریت صنعتی و فناوری، دانشکده مدیریت، دانشگاه تهران، تهران، ایران.

2 استادیار، گروه مدیریت تولید و عملیات، دانشکده مدیریت صنعتی و فناوری، دانشکده مدیریت، دانشگاه تهران، تهران، ایران.

3 دکتری مدیریت صنعتی، گروه مدیریت تولید و عملیات، دانشکده مدیریت صنعتی و فناوری، دانشکده مدیریت، دانشگاه تهران، تهران، ایران.

4 استاد، گروه مدیریت تولید و عملیات، دانشکده مدیریت صنعتی و فناوری، دانشکده مدیریت، دانشگاه تهران، تهران، ایران.

چکیده

صنعت مواد غذایی در انقلاب صنعتی چهارم به‌ویژه با فناوری اینترنت اشیا متحول شده است. این فناوری با اتصال اجزای مختلف کارخانه به صورت باسیم و بی‌سیم، کارایی را افزایش داده و زمینه‌ساز توسعه کارخانه‌های هوشمند و اهداف پایداری شده است. هدف این پژوهش تحلیل توانمندی و جذابیت کاربردهای اینترنت اشیا در صنعت مواد غذایی بر اساس شاخص‌های پایداری و قابلیت شرکت های فعال در صنعت مواد غذایی استان تهران در پیاده‌سازی این فناوری است. ابتدا با مرور نظام‌مند ادبیات، کاربردهای اینترنت اشیا در صنعت مواد غذایی و شاخص‌های جذابیت از منظر پایداری و توانمندی شناسایی شدند. خبرگان پژوهش متخصصان صنعت مواد غذایی استان تهران با سابقه مشارکت در پروژه های پیاده سازی فناوری اینترنت اشیا هستند. با طراحی و توزیع پرسشنامه‌ها به روش بهترین-بدترین، وزن شاخص‌ها تعیین شد. سپس ماتریس‌های تصمیم برای ارزیابی کاربردها بر اساس شاخص‌های جذابیت (پایداری) و توانمندی به‌صورت جداگانه تشکیل گردید و امتیاز هر کاربرد تعیین شد. با روش تاپسیس، امتیاز نهایی کاربردها استخراج و بر اساس ماتریس توانمندی-جذابیت، اولویت‌بندی انجام گرفت. نتایج نشان داد مهم‌ترین کاربردهای اینترنت اشیا با جذابیت و توانمندی بالا در شرکت‌های فعال در صنعت مواد غذایی استان تهران، شامل «جمع‌آوری داده در زمان واقعی»، «مدیریت موجودی مواد و بازپرسازی قفسه»، «مدیریت مصرف انرژی» و «سیستم هوشمند شناسایی حریق» است. یافته‌ها راهنمایی ارزشمند برای شناسایی و به‌کارگیری کاربردهای اینترنت اشیا در صنعت مواد غذایی در کشور با توجه به ظرفیت و زیرساخت شرکت‌های فعال ارائه می‌دهد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Analyzing the capability-attractiveness of Internet of Things technology applications in the food industry

نویسندگان [English]

  • Bahareh Deljoo 1
  • Rohollah Ghasemi 2
  • Mohsen Moradi moghadam 3
  • Ali Mohaghar 4

1 MSc Student in Industrial Management, Department of Production and Operations Management, Faculty of Industrial Management and Technology, college of Management, University of Tehran, Tehran, Iran.

2 Assistant Professor, Department of Production and Operations Management, Faculty of Industrial Management and Technology, college of Management, University of Tehran, Tehran, Iran.

3 PhD in Industrial Management, Department of Production and Operations Management, Faculty of Industrial Management and Technology, college of Management, University of Tehran, Tehran, Iran.

4 Professor, Department of Production and Operations Management, Faculty of Industrial Management and Technology, college of Management, University of Tehran, Tehran, Iran.

چکیده [English]

The food industry has been transformed by the Fourth Industrial Revolution, particularly through the application of the Internet of Things (IoT). This technology enhances efficiency by connecting various components of the factory—both wired and wirelessly—and paves the way for smart factories aligned with sustainability goals. The aim of this research is to analyze the capability–attractiveness of IoT applications in the food industry based on sustainability indicators and the readiness of selected companies in the food industry of Tehran province to implement these technologies. First, a systematic literature review was conducted to identify relevant IoT applications in the food industry, along with sustainability-based attractiveness indicators and capability criteria. The case study is selected companies in the food industry of Tehran province and their subsidiaries, which are currently deploying IoT technologies across various areas. Using the Best-Worst Method (BWM), the weights of the indicators were determined. Then, decision matrices were developed separately for evaluating the applications based on attractiveness (sustainability) and capability indicators, and each application was scored accordingly. The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was then used to obtain final rankings. Based on the capability–attractiveness matrix, the most promising IoT applications identified for implementation in the company include “real-time data collection,” “inventory management and shelf replenishment,” “energy consumption management,” and “smart fire detection systems.” The findings offer valuable insights for identifying and adopting IoT applications in the food industry, considering the capacities and infrastructure of companies.
Introduction
The food industry, a fundamental sector for human needs, faces increasing demand, customer expectations, and intense competition. To ensure food safety and profitability, companies are adopting advanced technologies like the Internet of Things. IoT, through networks of sensors and smart devices, enables intelligent interaction between equipment, machinery, and information systems, enhancing efficiency, streamlining processes, and supporting sustainable development. The Iranian food industry faces challenges such as high food waste, weak supply chain traceability, inefficient resource management, and ongoing quality concerns. IoT can effectively address these issues, yet many companies have not fully adopted it. This research provides a systematic approach to examine and prioritize IoT applications based on sustainability attractiveness and the capability of active companies in Tehran province. The main research question is: What is the implementation priority of IoT applications in active companies in Tehran province based on the attractiveness of each application and the companies' capability to acquire this technology?
Research Background
The Iranian food industry confronts significant challenges that threaten its sustainability and competitiveness, including extensive food waste during production, storage, and distribution, weak traceability in the supply chain, inefficient management of critical resources such as water and energy, and persistent product quality and safety risks. Lack of effective infrastructure for tracking and verifying food authenticity reduces consumer trust and enables food fraud. In this context, IoT technology emerges as a modern and efficient solution. By employing smart sensors to monitor storage and transportation, tracking systems in the supply chain, real-time monitoring of raw materials and products, and wearable devices to enhance worker safety, IoT can increase productivity, improve food safety, reduce waste, and strengthen consumer confidence. Targeted IoT adoption can address structural problems and enhance Iran’s national and international food industry standing. Despite this potential, many companies have not yet fully embraced IoT. This research seeks to provide a systematic approach to examining and prioritizing IoT applications while considering their sustainability benefits and internal company capabilities.
Methodology
This applied research adopts a quantitative, descriptive-survey, and cross-sectional approach, utilizing both library and field methods for data collection. The initial phase involved a systematic literature review to identify IoT applications relevant to the food industry, along with sustainability-based attractiveness indicators and capability criteria. Through this process, twelve key IoT applications were identified, such as real-time data collection, smart fire detection systems, and energy management. Additionally, nine sustainability indicators were defined across economic dimensions—including operational cost savings—social dimensions, such as customer satisfaction, and environmental dimensions, like waste reduction. Furthermore, eight capability indicators were established, covering areas such as platform development, security, and regulatory compliance.
The study targeted experts from the food industry in Tehran province, all with a minimum of five years of experience in IoT-related projects. A judgmental sampling method was employed, and data were collected from seven selected experts. To determine the weights of the attractiveness and capability indicators, the Best-Worst Method (BWM) was applied. The experts completed BWM questionnaires, and the final group weights were derived by calculating the arithmetic mean of their responses. Consistency ratios were also computed to verify the reliability of the comparisons.
Following this, separate decision matrices were constructed to evaluate the twelve IoT applications based on the weighted attractiveness and capability indicators. Each application was scored by the experts using a 10-point Likert scale. The TOPSIS method was subsequently employed to process these matrices, yielding final scores and rankings for the applications according to each dimension.
Finally, a Capability-Attractiveness Matrix (ACM) was developed. The TOPSIS scores for attractiveness, represented on the vertical axis, and capability, on the horizontal axis, were plotted for each application. The mean scores of all applications served as cutoff points, dividing the matrix into four distinct quadrants and thereby enabling strategic prioritization of the IoT applications.
Findings
The BWM analysis revealed the relative importance of the indicators. For attractiveness, the economic dimension was the most critical (0.725), followed by the social (0.175) and environmental (0.100) dimensions. Among all sub-indicators, "operational cost savings" (EC1) had the highest final weight (0.494), underscoring its paramount importance. For capability, "IoT platform development" (CAP3) was the most significant indicator (0.305), followed by "application development" (CAP4) and "security capability" (CAP5). All consistency ratios were within acceptable limits, confirming the reliability of the expert judgments.
The TOPSIS analysis provided separate rankings based on attractiveness and capability. Based on attractiveness (sustainability benefits), the top applications were "real-time data collection" (A1), "inventory management" (A10), and "energy consumption management" (A11). Based on capability (ease of implementation), the top applications were "smart fire detection" (A2), "real-time data collection" (A1), and "energy consumption management" (A11).
The integration of the TOPSIS results into the ACM yielded the final strategic prioritization. The applications were categorized into four quadrants: Quadrant 1 (High Attractiveness, High Capability) contained the most promising applications for immediate implementation: A1 (Real-Time Data Collection), A10 (Inventory Management), A11 (Energy Management), and A2 (Smart Fire Detection). These represent the first priority. Quadrant 2 (High Attractiveness, Low Capability) included applications A5 (Operational Cost Control), A4 (Process Automation), and A8 (Remote Facility Control). They are desirable but require capability-building efforts, marking them as a second priority. Quadrant 3 (Low Attractiveness, High Capability) contained applications A6 (Quality Monitoring) and A7 (Worker Health Monitoring). While companies have the capability, the perceived sustainability benefits are lower. These could be developed after Quadrant 1 applications. Quadrant 4 (Low Attractiveness, Low Capability) included applications A12 (Supplier Tracking), A3 (Worker Tracking), and A9 (Environmental Monitoring), indicating the lowest priority for implementation.
Discussion and conclusion
This study identified and prioritized IoT applications for the food industry in Tehran province using a structured Capability-Attractiveness framework. The findings indicate that the primary focus for companies should be on applications in Quadrant 1, which offer high sustainability benefits and align with existing organizational capabilities. The prominence of real-time data collection, inventory management, and energy management aligns with global trends emphasizing operational efficiency and resource optimization.
The placement of environmental monitoring (A9) in the low-priority quadrant (4) contrasts with international research that emphasizes green technologies. This discrepancy may be attributed to weaker environmental regulations, lower technological infrastructure, or a primary focus on immediate economic gains within the Iranian context.
The prioritization based on the ACM provides a more comprehensive strategy than ranking by attractiveness or capability alone. It allows decision-makers to select applications that not only offer high value but also have a lower implementation risk, considering their specific resources and infrastructure.
In conclusion, this research enhances our understanding of IoT as an emerging and transformative technology in the food industry. It assesses various applications from economic, social, and environmental perspectives while evaluating implementation feasibility. The results can serve as a valuable guide for decision-makers and policymakers in the Iranian food industry, enabling a more strategic and effective adoption of IoT technologies. A limitation of this study is the lack of a detailed technical-economic feasibility analysis for each application. Future research should conduct in-depth studies on the selected applications to identify implementation challenges and provide practical solutions.

کلیدواژه‌ها [English]

  • Internet of Things (IoT)
  • food industry
  • Best-Worst Method (BWM)
  • TOPSIS
  • capability–attractiveness analysis
  1. Adeleke, I., Nwulu, N., & Adebo, O. A. (2023). Internet of Things (IoT) in the food fermentation process: A bibliometric review. Journal of Food Process Engineering46(5), e14321. https:/‌/‌doi.org/‌10.1111/‌jfpe.14321
  2. Agarwal, S., Sharma, V., & Pughat, A. (2019). Supplier selection problem in IoT solutions. International Journal of Pervasive Computing and Communications15(1), 16-19.‏ https:/‌/‌doi.org/‌10.1108/‌IJPCC-D-18-00022
  3. Ahmad Tarmizi, H., Kamarulzaman, N. H., Abd Rahman, A., & Atan, R. (2020). Adoption of internet of things among Malaysian halal agro-food SMEs and its challenges. Food Research, 4(1), 256-265.‏ Retrieved from: https:/‌/‌pdfs.semanticscholar.org/‌c6e4
  4. Ahmad, T., & Zhang, D. (2021). Using the internet of things in smart energy systems and networks. Sustainable Cities and Society68, 102783.‏ https:/‌/‌doi.org/‌10.1016/‌j.scs.2021.102783
  5. ‏Al-Hitmi, M., & Sherif, K. (2018). Employee perceptions of fairness toward IoT monitoring. VINE Journal of Information and Knowledge Management Systems48(4), 504-516. https:/‌/‌doi.org/‌10.1108/‌ VJIKMS-01-2018-0007
  6. Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer networks, 54(15), 2787-2805.‏ https:/‌/‌doi.org/‌10.1016/‌j.comnet.2010.05.010
  7. Bello, O., & Zeadally, S. (2014). Intelligent device-to-device communication in the internet of things. IEEE Systems Journal, 10(3), 1172-1182.‏ https:/‌/‌doi.org/‌10.1109/‌JSYST.2014.2298837
  8. Ben-Daya, M., Hassini, E., & Bahroun, Z. (2019). Internet of things and supply chain management: a literature review. International journal of production research57(15-16), 4719-4742.‏ https:/‌/‌doi.org/‌10.1080/‌00207543.2017.1402140
  9. Ben-Daya, M., Hassini, E., Bahroun, Z., & Banimfreg, B. H. (2020). The role of internet of things in food supply chain quality management: A review. Quality management journal, 28(1), 17-40.‏ https:/‌/‌doi.org/‌10.1080/‌10686967.2020.1838978
  10. Beniwal, G., & Singhrova, A. (2022). A systematic literature review on IoT gateways. Journal of King Saud University-Computer and Information Sciences, 34(10), 9541-9563. https:/‌/‌doi.org/‌10.1016/‌j.jksuci.2021.11.007
  11. Bhattacharjya, A., Zhong, X., Wang, J., & Li, X. (2019). Security challenges and concerns of Internet of Things (IoT). Cyber-Physical Systems: architecture, security and application, 153-185 https:/‌/‌doi.org/‌10.1007/‌978-3-319-92564-6_7
  12. Bhutta, M. N. M., & Ahmad, M. (2021). Secure identification, traceability and real-time tracking of agricultural food supply during transportation using internet of things. IEEE Access, 9, 65660-65675.‏ DOI: 1109/‌ACCESS.2021.3076373
  13. Bougdira, A., Akharraz, I., & Ahaitouf, A. (2023). A computer-aided system for monitoring quality using traceable information. International Journal of Computer Aided Engineering and Technology18(1-3), 19-38.‏ https:/‌/‌doi.org/‌10.1504/‌IJCAET.2023.127784
  14. Bouzembrak, Y., Klüche, M., Gavai, A., & Marvin, H. J. (2019). Internet of Things in food safety: Literature review and a bibliometric analysis. Trends in Food Science & Technology94, 54-64 https:/‌/‌doi.org/‌10.1016/‌j.tifs.2019.11.002
  15. Chatterjee, S., & Kar, A. K. (2018). Regulation and governance of the Internet of Things in India. Digital Policy, Regulation and Governance, 20(5), 399-412 https:/‌/‌doi.org/‌10.1108/‌DPRG-04-2018-0017.‏
  16. Ciardiello, F., & Genovese, A. (2023). A comparison between TOPSIS and SAW methods. Annals of Operations Research325(2), 967-994.‏ https:/‌/‌doi.org/‌10.1007/‌s10479-023-05339-w
  17. Corradini, F., Fedeli, A., Fornari, F., Polini, A., Re, B., & Ruschioni, L. (2023). X-IoT: a model-driven approach to support IoT application portability across IoT platforms. Computing, 105(9), 1981-2005. https:/‌/‌doi.org/‌10.1007/‌s00607-023-01155-z
  18. Da Xu, L., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions on industrial informatics10(4), 2233-2243. DOI: 1109/‌TII.2014.2300753
  19. Dadhaneeya, H., Nema, P. K., & Arora, V. K. (2023). Internet of Things in food processing and its potential in Industry 4.0 era: A review. Trends in Food Science & Technology.‏ 139, 104109, https:/‌/‌doi.org/‌10.1016/‌j.tifs.2023.07.006
  20. Dawes, J. (2008). Do data characteristics change according to the number of scale points used? An experiment using 5-point, 7-point and 10-point scales. International journal of market research50(1), 61-104.‏ DOI: https:/‌/‌doi.org/‌10.1007/‌s00607-023-01155-z
  21. de Hoz Diego, J. D., Madi, T., & Konstantinou, C. (2024). CMXsafe: A Proxy Layer for Securing Internet-of-Things Communications. IEEE Transactions on Information Forensics and Security. DOI: 1109/‌TIFS.2024.3404258
  22. Doitsidis, L., Fouskitakis, G. N., Varikou, K. N., Rigakis, I. I., Chatzichristofis, S. A., Papafilippaki, A. K., & Birouraki, A. E. (2017). Remote monitoring of the Bactrocera oleae (Gmelin)(Diptera: Tephritidae) population using an automated McPhail trap. Computers and Electronics in Agriculture, 137, 69-78. https:/‌/‌doi.org/‌10.1016/‌j.compag.2017.03.014
  23. Elijah, O., Rahman, T. A., Orikumhi, I., Leow, C. Y., & Hindia, M. N. (2018). An overview of Internet of Things (IoT) and data analytics in agriculture: Benefits and challenges. IEEE Internet of things Journal5(5), 3758-3773 https:/‌/‌doi.org/‌10.1109/‌JIOT.2018.2844296
  24. Esfandiari, Z., Mansouripour, S., Baba, F. V., Fakhri, Y., Rostami, M., & Szumny, A. (2025). National Regulations and Management Systems for Implementation and Monitoring of Food Safety in Iran: A Narrative Review of Literature. International Journal of Environmental Health Engineering14(1), 2.‏ DOI:4103/‌ijehe.ijehe_39_24
  25. ‏Ferrag, M. A., Shu, L., Yang, X., Derhab, A., & Maglaras, L. (2020). Security and privacy for green IoT-based agriculture: Review, blockchain solutions, and challenges. IEEE access, 8, 32031-32053.DOI: https:/‌/‌doi.org/‌10.1109/‌ACCESS.2020.2973178
  26. Ferrández-Pastor, F. J., García-Chamizo, J. M., Nieto-Hidalgo, M., Mora-Pascual, J., & Mora-Martínez, J. (2016). Developing ubiquitous sensor network platform using internet of things: Application in precision agriculture. Sensors, 16(7), 1141 https:/‌/‌doi.org/‌10.3390/‌s16071141
  27. Ghasemi, R., Alidoosti, A., Hosnavi, R., & Norouzian Reikandeh, J. (2018:a). Identifying and Prioritizing Humanitarian Supply Chain Practices to Supply Food before an Earthquake. Industrial Management Journal, 10(1), 1-16.DOI: https:/‌/‌doi.org/‌10.22059/‌imj.2018.234645.1007246
  28. Ghasemi, R., Mahbanooei, B., & Beigi, R. G. (2018: b). The relationship between labor market efficiency and innovation. In Proceeding of 11th International Seminar on Industrial Engineering & Management (ISIEM)(Nov. 27-29, 2018 Makassar, Indonesia)(pp. 142-149). Retrieved from: https:/‌/‌isiem.net/‌wp-content/‌uploads/‌2019/‌08/‌11th_ISIEM_2018_paper_126.pdf
  29. Ghasemi, R., Mohaghar, A., Safari, H., & Akbari Jokar, M. R. (2016). Prioritizing the applications of internet of things technology in the healthcare sector in Iran: A driver for sustainable development. Journal of information technology management8(1), 155-176. Doi: https:/‌/‌doi.org/‌10.22059/‌jitm.2016.55760
  30. Ghazinoory, S., Divsalar, A., & Soofi, A. S. (2009). A new definition and framework for the development of a national technology strategy: The case of nanotechnology for Iran. Technological Forecasting and Social Change, 76(6), 835-848. https:/‌/‌doi.org/‌10.1016/‌j.techfore.2008.10.004
  31. Gorovei, A. (2020). Internet of Things and Employee Happiness in the Digital Era. In Strategica: International Academic Conference (pp. 486-494). Retrieved from: publication/‌345730256_
  32. Han-jiang, Z., & Qin, C. (2013, July). Comprehensive evaluation of the auto parts supplier selection under the environment of things networking. In Proceedings of 2013 IEEE international conference on service operations and logistics, and informatics(pp. 540-545). IEEE.‏ DOI: https:/‌/‌doi.org/‌10.1109/‌SOLI.2013.6611473
  33. Hardin IV, R. G., Barnes, E. M., Delhom, C. D., Wanjura, J. D., & Ward, J. K. (2022). Internet of things: Cotton harvesting and processing. Computers and Electronics in Agriculture, 202, 107294.‏ https:/‌/‌doi.org/‌10.1016/‌j.compag.2022.107294
  34. Hashemi Petrudi, S. H., & Sharifpour Arabi, H. (2025). Barriers to product return in a circular supply chain: a case from a retailing industry. Annals of Operations Research, 1-35.‏ retrieved from: https:/‌/‌link.springer.com/‌article/‌10.1007/‌s10479-025-06464-4
  35. HUIYAN, L., & GHOSH, A. (2023). How strategic knowledge management and the Internet of Things (iot) affect the performance and innovation of Chinese manufacturing businesses. Journal of Management and Architecture Research, 5(11), 01-13.‏ retrieved from: https:/‌/‌jomaar.com/‌index.php/‌jomaar/‌article/‌view/‌25
  36. Jafarnejad, A., Ghasemi, R., Abdollahi, B., & Esmailzadeh, A. (2013). Relationship between macroeconomic environment and technological readiness: A secondary analysis of countries global competitiveness. International Journal of Management Perspective, 1(2), 1-13. Retrieved from: publication/‌315573973
  37. Jagtap, S. (2019). Utilising the Internet of Things concepts to improve the resource efficiency of food manufacturing.‏ Doctor of Thesis, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University. (Sep. 2019). Retrieved from: https:/‌/‌repository.lboro.ac.uk/‌articles/‌thesis11180456/‌ 19771535.pdf
  38. Jagtap, S., Bhatt, C., Thik, J., & Rahimifard, S. (2019). Monitoring potato waste in food manufacturing using image processing and internet of things approach. Sustainability11(11), 3173. https:/‌/‌doi.org/‌10.3390/‌su11113173
  39. Jagtap, S., Garcia-Garcia, G., & Rahimifard, S. (2021). Optimisation of the resource efficiency of food manufacturing via the Internet of Things. Computers in Industry, 127, 103397.‏ https:/‌/‌doi.org/‌10.3390/‌su11113173
  40. Jagtap, S., Rahimifard, S., & Duong, L. N. (2022). Real‐time data collection to improve energy efficiency: A case study of food manufacturer. Journal of food processing and preservation, 46(8), e14338 retrieved from; https:/‌/‌ifst.onlinelibrary.wiley.com/‌doi/‌pdf/‌ 10.1111/‌jfpp.14338
  41. Jagtap, S., Saxena, P., & Salonitis, K. (2021). Food 4.0: implementation of the augmented reality systems in the food industry. Procedia CIRP104, 1137-1142.‏ https:/‌/‌doi.org/‌10.1016/‌j.procir.2021.11.191
  42. Jiang, Y. (2022). Project cost accounting based on internet of things technology. Journal of Interconnection Networks22(03), 2145012.‏ https:/‌/‌doi.org/‌10.1142/‌S0219265921450122
  43. Kamble, S. S., Gunasekaran, A., Parekh, H., & Joshi, S. (2019). Modeling the internet of things adoption barriers in food retail supply chains. Journal of Retailing and Consumer Services, 48, 154-168.‏ https:/‌/‌doi.org/‌10.1016/‌j.jretconser.2019.02.020
  44. Kaupins, G., & Coco, M. (2017). Perceptions of internet-of-things surveillance by human resource managers. SAM Advanced Management Journal82(2), 53-64. Retrieved from:‏ https:/‌/‌search.proquest.com/‌openview/‌192099e2d647fee2a30cbb7b53b91258/‌1?pq-origsite=gscholar&cbl=40946
  45. Khan, Y., Su’ud, M. B. M., Alam, M. M., Ahmad, S. F., Ahmad, A. Y. B., & Khan, N. (2022). Application of internet of things (iot) in sustainable supply chain management. Sustainability15(1), 694.‏; https:/‌/‌doi.org/‌10.3390/‌su15010694
  46. Kiktev, N. A., Lendiel, T., & Osypenko, V. (2020, December). Application of the Internet of Things Technology in the Automation of the Production of Compound Feed and Premixes. In IT&I(pp. 124-133). Retrieved from: ‏ https:/‌/‌ceur-ws.org/‌Vol-2833/‌Paper_12.pdf
  47. Kineber, A. F. (2024). Identifying the Internet of Things (IoT) implementation benefits for sustainable construction project. HBRC Journal, 20(1), 700-766. https:/‌/‌doi.org/‌10.1080/‌16874048.2024.2369462
  48. Kodan, R., Parmar, P., & Pathania, S. (2020). Internet of things for food sector: Status quo and projected potential. Food Reviews International, 36(6), 584-600.‏ https:/‌/‌doi.org/‌10.1080/‌87559129.2019.1657442
  49. Kumar, S., Raut, R. D., Priyadarshinee, P., Mangla, S. K., Awan, U., & Narkhede, B. E. (2022). The impact of IoT on the performance of vaccine supply chain distribution in the COVID-19 context. IEEE Transactions on Engineering Management. https:/‌/‌doi.org/‌10.1109/‌TEM.2022.3157625
  50. Lai, Y. J., Liu, T. Y., & Hwang, C. L. (1994). Topsis for MODM. European journal of operational research76(3), 486-500. https:/‌/‌doi.org/‌10.1016/‌0377-2217(94)90282-8
  51. Latheef, S., & Sumimol, L. (2023, March). Wearable smart gadget for child monitoring based on the internet of things. In 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS)(Vol. 1, pp. 1827-1831). IEEE. https:/‌/‌doi.org/‌10.1109/‌ICACCS57279.2023.10113009
  52. Li, Z., Liu, G., Liu, L., Lai, X., & Xu, G. (2017). IoT-based tracking and tracing platform for prepackaged food supply chain. Industrial Management & Data Systems, 117(9), 1906-1916.‏ https:/‌/‌doi.org/‌10.1108/‌IMDS-11-2016-0489
  53. Maksimović, M., Vujović, V., & Omanović-Miklić anin, E. (2015). Application of internet of things in food packaging and transportation. International Journal of Sustainable Agricultural Management and Informatics1(4), 333-350 https:/‌/‌doi.org/‌10.1504/‌IJSAMI.2015.075053
  54. Maksimovic, M., Vujovic, V., & Omanovic-Miklicanin, E. (2015, September). A Low Cost Internet of Things Solution for Traceability and Monitoring Food Safety During Transportation. In HAICTA(pp. 583-593). Retrieved from: publication/‌285055479
  55. Mashayekhy, Y., Babaei, A., Yuan, X. M., & Xue, A. (2022). Impact of Internet of Things (IoT) on inventory management: A literature survey. Logistics6(2), 33. https:/‌/‌doi.org/‌10.3390/‌logistics6020033
  56. Mathaba, S., Adigun, M., Oladosu, J., & Oki, O. (2017). On the use of the Internet of Things and Web 2.0 in inventory management. Journal of Intelligent & Fuzzy Systems32(4), 3091-3101.‏ DOI: 3233/‌JIFS-169252
  57. Minaam, D. S. A., Abd-ELfattah, M., & Ali, M. A. (2018). Design of an Internet of Things (IoT) network system for kitchen food waste management. International Journal of Computer Science and Network Security18(5), 130-138. Retrieved from: 76061375/‌20180518
  58. Miorandi, D., Sicari, S., De Pellegrini, F., & Chlamtac, I. (2012). Internet of things: Vision, applications and research challenges. Ad hoc networks, 10(7), 1497-1516.‏ https:/‌/‌doi.org/‌10.1016/‌j.adhoc.2012.02.016
  59. Misra, N. N., Dixit, Y., Al-Mallahi, A., Bhullar, M. S., Upadhyay, R., & Martynenko, A. (2020). IoT, big data, and artificial intelligence in agriculture and food industry. IEEE Internet of things Journal, 9(9), 6305-6324.‏ DOI: 10.1109/‌JIOT.2020.2998584
  60. Mohaghar, A., Ghasemi, R., Abdullahi, B., Esfandi, N., & Jamalian, A. (2011). Canonical correlation analysis between supply chain relationship quality and cooperative strategy: a case study in the Iranian automotive industry. European Journal of Social Sciences26(1), 132-145. Retrieved from: publication/‌287383939
  61. Mohaghar, A., Heydarzadeh Moghaddam, H., & Ghasemi, R. (2023). Developing a Model to Optimize Maximum Coverage of Roadside Units Placement in Vehicular Ad–hoc Network for Intelligent Transportation System. Journal of Industrial Management Perspective13(2), 211-240. Doi: https:/‌/‌doi.org/‌10.48308/‌jimp. 13.2.211
  62. Mohaghar, A., Sadeghi Moghadam, M. R., Ghourchi Beigi, R., & Ghasemi, R. (2021). IoT-based services in the banking industry using a business continuity management approach. Journal of Information Technology Management13(4), 16–38. Doi: 22059/‌jitm.2021.314908.2666
  63. Mohaghegh, M., & Shirazi, B. (2017). Strategic assessment of power smart grid technology capabilities and attractiveness: A case study on Iran Power Distribution Company. International Journal of Innovation and Technology Management, 14(03), 1750010. https:/‌/‌doi.org/‌10.1142/‌S0219877017500109
  64. Morchid, A., Alblushi, I. G. M., Khalid, H. M., El Alami, R., Said, Z., Qjidaa, H., ... & Jamil, M. O. (2025). Fire Detection and Anti-Fire System to Enhance Food Security: A Concept of Smart Agriculture Systems-Based IoT and Embedded Systems with Machine-to-Machine Protocol. Scientific African, e02559. https:/‌/‌doi.org/‌10.1016/‌j.sciaf.2025.e02559
  65. Mu, X., & Antwi-Afari, M. F. (2024). The applications of Internet of Things (IoT) in industrial management: a science mapping review. International Journal of Production Research, 62(5), 1928-1952.‏ https:/‌/‌doi.org/‌10.1080/‌00207543.2023.2290229
  66. Munirathinam, S. (2020). Industry 4.0: Industrial internet of things (IIOT). In Advances in computers, 117(1), 129-164). Retrieved from: https:/‌/‌doi.org/‌10.1016/‌bs.adcom.2019.10.010
  67. Nappi, I., & de Campos Ribeiro, G. (2020). Internet of Things technology applications in the workplace environment: A critical review. Journal of Corporate Real Estate22(1), 71-90.‏  https:/‌/‌doi.org/‌10.1108/‌JCRE-06-2019-0028
  68. Nasrollahi, M., Ghadikolaei, A. S., Ghasemi, R., Sheykhizadeh, M., & Abdi, M. (2022). Identification and prioritization of connected vehicle technologies for sustainable development in Iran. Technology in Society, 68, 101829. Retrieved from: https:/‌/‌doi.org/‌10.1016/‌j.techsoc.2021.101829
  69. Onibonoje, M. O. (2021). Sensor Networks and Internet of Things in Agri-Food. In Internet of Things (pp. 177-194). CRC Press. Retrieved from:https:/‌/‌www.taylorfrancis.com/‌chapters/‌edit/‌10.1201/‌9781003140443-13/‌sensor-networks-internet-things-agri-food-moses-oluwafemi-onibonoje
  70. Ostojić, G., Stankovski, S., Tegeltija, S., Đukić, N., & Tejić, B. (2017, October). Implementation of IoT for food wastage minimisation. In XVII International Scientific Conference on Industrial Systems, Novi Sad, Serbia(pp. 116-121). Retrieved from: https:/‌/‌www.iim.ftn.uns.ac.rs/‌is17/‌papers/‌21.pdf
  71. Paul, P., & Singh, B. (2023). Healthcare employee engagement using the internet of things: a systematic overview. The Adoption and Effect of Artificial Intelligence on Human Resources Management, Part A, 71-97.‏  https:/‌/‌doi.org/‌10.1108/‌978-1-80382-027-920231004
  72. Pizzarelli, D. A. (2021). The role of technology as enabler of short food supply chains.‏ Retrieved from: https:/‌/‌www.politesi.polimi.it/‌handle/‌10589/‌211909
  73. Popescu, S. M., Mansoor, S., Wani, O. A., Kumar, S. S., Sharma, V., Sharma, A., ... & Chung, Y. S. (2024). Artificial intelligence and IoT driven technologies for environmental pollution monitoring and management. Frontiers in Environmental Science, 12, 1336088. Retrieved from: https:/‌/‌www.frontiersin.org/‌journals/‌environmental-science/‌articles/‌10.3389/‌fenvs.2024.1336088/‌full
  74. Pourezzat, A.A., Mahbanooei, B., Ghasemi, R., Rafiei, S. (2022). Governance Performance Evaluation System, University of Tehran Press:, Retrieved from: https:/‌/‌press.ut.ac.ir/‌book_3670.html
  75. Raźniewska, M. (2018). Meeting the Challenges of Food Sector using Supplier Relationship Management. In 8th International Conference on Management, Economics and Humanities, Barcelona(pp. 99-109). Retrieved from:‏ 84577909/‌icmeh-8-53-173
  76. Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49–57. https:/‌/‌doi.org/‌10.1016/‌j.omega.2014.11.009
  77. Režek Jambrak, A., Nutrizio, M., Djekić, I., Pleslić, S., & Chemat, F. (2021). Internet of nonthermal food processing technologies (Iontp): Food industry 4.0 and sustainability. Applied Sciences11(2), 686. https:/‌/‌doi.org/‌10.3390/‌app11020686
  78. Safarzadeh, S., Khansefid, S., & Rasti-Barzoki, M. (2018). A group multi-criteria decision-making based on best-worst method. Computers & Industrial Engineering126, 111-121.‏ https:/‌/‌doi.org/‌10.1016/‌j.cie.2018.09.011
  79. Saha, H. N., Auddy, S., Chatterjee, A., Pal, S., Pandey, S., Singh, R., ... & Maity, A. (2017, August). Pollution control using internet of things (IoT). In 2017 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON)(pp. 65-68). IEEE. DOI: 1109/‌IEMECON.2017.8079563
  80. Savio, R. (2021). Latest Project Management Trends and Challenges with COVID-19. Eximia2(1), 8-11. Retrieved from: https:/‌/‌ideas.repec.org/‌a/‌tec/‌eximia/‌v2y2021i1p8-11.html
  81. Seliger, G. (Ed.). (2007). Sustainability in manufacturing: recovery of resources in product and material cycles. Berlin, Heidelberg: Springer Berlin Heidelberg. (pp 217–311), https:/‌/‌doi.org/‌10.1007/‌978-3-540-49871-1_5
  82. Shrouf, F., & Miragliotta, G. (2015). Energy management based on Internet of Things: practices and framework for adoption in production management. Journal of Cleaner Production100, 235-246.‏ https:/‌/‌doi.org/‌10.1016/‌j.jclepro.2015.03.055
  83. Soori, M., Arezoo, B., & Dastres, R. (2023). Internet of things for smart factories in industry 4.0, a review. Internet of Things and Cyber-Physical Systems, 3, 192-204.‏ https:/‌/‌doi.org/‌10.1016/‌j.iotcps.2023.04.006
  84. Stanton, J. M., & Stam, K. R. (2006). The visible employee: using workplace monitoring and surveillance to protect information assets--without compromising employee privacy or trust. Information Today, Inc..Retrieved from: hlfalridfYXKRxuTHIcC&oi7
  85. Sun, X., & Wang, X. (2022). Modeling and analyzing the impact of the Internet of Things-based Industry 4.0 on circular economy practices for sustainable development: Evidence from the food processing industry of China. Frontiers in Psychology, 13, 866361. https:/‌/‌doi.org/‌10.3389/‌fpsyg.2022.866361
  86. Tamer, G., & Gurul, B. (2019). Project Cost Control in Industry 4.0. In Agile Approaches for Successfully Managing and Executing Projects in the Fourth Industrial Revolution(pp. 64-79). IGI Global. DOI: 4018/‌978-1-5225-7865-9.ch004
  87. Tankard, C. (2015). The security issues of the Internet of Things. Computer Fraud & Security, 2015(9), 11-14.‏ https:/‌/‌doi.org/‌10.1016/‌S1361-3723(15)30084-1
  88. Tien, J. M. (2017). Internet of things, real-time decision making, and artificial intelligence. Annals of Data Science, 4, 149-178. https:/‌/‌doi.org/‌10.1007/‌s40745-017-0112-5
  89. Wan, S. P., Dong, J. Y., & Chen, S. M. (2024). A novel intuitionistic fuzzy best-worst method for group decision making with intuitionistic fuzzy preference relations. Information Sciences666, 120404.‏ https:/‌/‌doi.org/‌10.1016/‌j.ins.2024.120404
  90. Wójcicki, K., Biegańska, M., Paliwoda, B., & Górna, J. (2022). Internet of things in industry: Research profiling, application, challenges and opportunities—a review. Energies, 15(5), 1806.‏ https:/‌/‌doi.org/‌10.3390/‌en15051806
  91. Wollschlaeger, M., Sauter, T., & Jasperneite, J. (2017). The future of industrial communication: Automation networks in the era of the internet of things and industry 4.0. IEEE industrial electronics magazine11(1), 17-27.‏ DOI: 1109/‌MIE.2017.2649104
  92. Yang, Z., Wang, Q., & Jia, M. (2023). Integrating Industry 4.0 and the Internet of Things (IoT) for eco-friendly manufacturing. The International Journal of Advanced Manufacturing Technology, 1-10. https:/‌/‌doi.org/‌10.1007/‌s00170-023-12331-y
  93. Yousefi, D., Yousefi, J., Ghasemi, R., & Mohaghar, A. (2024). Key success factors to implement IoT in the food supply chain. Journal of Information Technology Management16(3), 61-91. Doi: 22059/‌jitm.2024.372404.3618
  94. Zamani, M., Ghorchibeigi, R., & Ghasemi, R. (2018). Identifying the requirements and applications of Internet of things (IoT) in the banking industry based on international experience. In 7th National Conference on Electronic Banking and Payment Systems, Tehran, Iran. Doi: publication/‌346910535
  95. Zeinab, K. A. M., & Elmustafa, S. A. A. (2017). Internet of things applications, challenges and related future technologies. World Scientific News, 67(2), 126-148. Retrieved from:‏ publication/‌313651150
  96. Zhang, J., Qu, X., & Sangaiah, A. K. (2018). A study of green development mode and total factor productivity of the food industry based on the industrial internet of things. IEEE Communications Magazine, 56(5), 72-78. https:/‌/‌doi.org/‌10.1109/‌MCOM.2018.1700789