نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته مدیریت فناوری اطلاعات، دانشگاه رازی، کرمانشاه، ایران.

2 استادیارگروه مدیریت و کارآفرینی، ، دانشگاه رازی، کرمانشاه، ایران

3 دانشجوی دکتری گروه اقتصاد و کارآفرینی، دانشگاه رازی، کرمانشاه ، ایران

چکیده

هدف این پژوهش شناسایی مولفه ها و شاخص های پیشران در مدیریت زنجیره تأمین سبز مبتنی بر اینترنت اشیاء است. این پژوهش از نظر روش شناسی، پژوهشی آمیخته است که در دو مرحله انجام شد. ابتدا با مرور مبانی نظری و مطالعات پیشین از طریق روش تحلیل محتوای کیفی، شاخص های مربوط به پیشران‌های مدیریت زنجیره تأمین سبز مبتنی بر اینترنت اشیا شناسایی شدند؛ سپس برای تأیید و اعتبارسنجی شاخص های شناسایی‌شده، این شاخص ها در اختیار 22 نفر از خبرگان حوزه مدیریت و فناوری اطلاعات قرار گرفتند. نتایج پژوهش نشان دهنده ی آن است که مدل زنجیره تأمین سبز مبتنی بر اینترنت اشیاء دارای 9 مؤلفه و 66 شاخص است. مؤلفه های شناسایی شده عبارتند از: مدیریت هوشمند زنجیره تأمین، پایش لحظه ای وضعیت اشیاء در زنجیره تأمین، انتقال هوشمند اشیاء در طول زنجیره تأمین، مکان یابی هوشمند اشیاء در زنجیره تأمین، شفافیت اطلاعاتی در زنجیره تأمین و کاهش فساد، مدیریت کیفیت هوشمند در زنجیره تأمین، منبع یابی هوشمند در زنجیره تأمین، مدیریت توزیع هوشمند و مدیریت موجودی هوشمند. پیشران های گسترده ی مدل پیشنهادی حاکی از لزوم توجه به استفاده از اینترنت اشیاء در مدیریت زنجیره ی تأمین در جهت بهبود عملکرد کلی زنجیره تأمین و تمرکز بر ملاحظات زیست محیطی است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Identifying components and driving indicators in green supply chain management based on Internet of Things

نویسندگان [English]

  • hossein karimi 1
  • MohhamadJavad Jamshidi 2
  • Milad Bakhsham 3

1 Graduated from Information Technology Management, Razi University, Kermanshah, Iran.

2 Assistant Professor, Department of Management and Entrepreneurship, Razi University, Kermanshah, Iran

3 PhD student in the Department of Economics and Entrepreneurship, Razi University, Kermanshah, Iran

چکیده [English]

This research aims to identify key components and indicators for managing green supply chains utilizing the Internet of Things (IoT). The methodology employed is a mixed approach consisting of two stages. First, through qualitative content analysis, this study reviews theoretical foundations and previous research to identify indicators associated with drivers for green supply chain management based on IoT. Subsequently, these indicators were presented to 22 experts in management and information technology to validate and verify them. The research findings reveal that the IoT-based green supply chain model encompasses nine components and 66 indicators. These components include intelligent supply chain management, real-time monitoring of object statuses in the supply chain, intelligent object transfer along the supply chain, intelligent object location in the supply chain, information transparency within the supply chain, corruption reduction, intelligent quality management within the supply chain, intelligent sourcing in the supply chain, intelligent distribution management, and intelligent inventory management. The comprehensive drivers in the proposed model emphasize the importance of incorporating IoT in supply chain management to enhance overall supply chain performance while addressing environmental concerns.
Introduction
As technology continues to advance rapidly across various industries, mankind has enjoyed an improved quality of life. However, the environmental toll of recent decades, such as global warming, water scarcity, polar ice melting, habitat destruction, and deforestation, has raised significant environmental concerns. Modern human activities have contributed to these environmental issues. Consequently, there is mounting pressure on companies to integrate environmentally responsible practices into their operations and supply chains. Recognizing the pivotal role of green supply chain management in sustainable job creation, environmental problem reduction, improved public health through safer food consumption, and enhanced agricultural land productivity, recent years have witnessed increased interest and research into the determinants of green supply chain management.
Methodology
This research adopts a mixed-method approach conducted in two stages. Firstly, qualitative content analysis is employed to review theoretical foundations and prior studies, facilitating the identification of indicators associated with drivers for green supply chain management using IoT. Subsequently, these identified indicators are validated and verified by 22 experts specializing in management and information technology.
Results
The research findings indicate that green supply chain management, with an IoT approach, comprises nine components: intelligent supply chain management, real-time monitoring of object statuses, intelligent object transfer, intelligent object location, information transparency, corruption reduction, intelligent quality management, intelligent sourcing, intelligent distribution management, and intelligent inventory management.
Conclusions
This study highlights the presence of nine components and 66 indicators within the IoT-based green supply chain model. These components encompass various aspects of supply chain management, emphasizing the importance of incorporating IoT technology to enhance overall supply chain performance while addressing environmental considerations. Due to the growing concerns surrounding environmental issues and the emission of harmful substances by companies, it is highly recommended to incorporate the IoT into supply chain management. This integration serves to monitor and control the quantity of waste generated, and encourages the use of environmentally-friendly 3D printing for creating IoT sensors instead of traditional plastic materials. Furthermore, it is advisable to optimize waste collection schedules and routes for garbage trucks, as these measures can significantly reduce the time and resources spent on waste management. To facilitate this transition, managers should organize in-service training programs to educate employees about IoT technology and communication equipment, emphasizing the positive impact of these advancements on green supply chain management. Additionally, adopting state-of-the-art technologies like Radio-Frequency Identification (RFID) in supply chain systems can contribute to the development of a sustainable and environmentally-conscious supply chain. Legislative bodies should also play a crucial role in promoting green supply chain practices by identifying and addressing legal loopholes in existing supply chain-related laws. This can be achieved through the implementation of incentives, such as tax reductions for eco-friendly companies, or penalties, including tax hikes, financial fines, and even legal repercussions, to encourage the adoption of smoother and more environmentally responsible supply chain management practices. It's worth noting that this research has certain limitations. It primarily relied on articles within specific databases during a defined timeframe, excluding other valuable sources like foreign books and theses due to accessibility constraints. Furthermore, qualitative research inherently depends on the researcher's interpretation and perspective, potentially affecting the reliability of the results. Lastly, challenges related to the COVID-19 pandemic and respondent reluctance posed difficulties during the research process.

کلیدواژه‌ها [English]

  • Green Supply Chain
  • Internet of Things
  • Supply Chain
  • drivers
  1. بخشم، میلاد؛ کریمی، حسین و حسین پور، مهدی. (1400). تأثیر کاربردهای فناورانه اینترنت اشیاء بر توسعه قابلیت‌های پویا در شرکت‌های دانش‌بنیان بخش کشاورزی، راهبردهای کارآفرینی در کشاورزی، 15، 67-75.
  2. جمالی، غلامرضا؛ موسوی، سید اسماعیل و محمدی، معصومه. (1398). تحلیل ارتباط میان شاخص‌های کاربرد اینترنت اشیاء در زنجیره تأمین لوازم‌خانگی با استفاده از رویکرد نقشه شناختی فازی،مطالعات مدیریت فناوری اطلاعات، 8(30)، 137-162.
  3. جمشیدی، محمدجواد. (1396). استراتژی‌های مدیریت زنجیره تأمین سبز برای دستیابی به توسعه پایدار. ششمین کنگره فناوری‌های نوین ایران باهدف دستیابی به توسعه پایدار.
  4. رجبی پور میبدی، علیرضا؛ مفتح زاده، الهام؛ کیانی، مهرداد و زمزم، فاطمه. (1399). طراحی الگوی عوامل مؤثر بر استقرار مدیریت زنجیره تأمین سبز بر اساس رویکرد فراترکیب و تحلیل و توسعه گزینه‌های استراتژیک (سودا)، مدیریت بهره‌وری، 15(1)، 265-293.
  5. رضایی، متین و ربیعی، محمد. (1396). نقش سیستم بینایی ماشین و اینترنت اشیا در زنجیره تأمین مواد غذایی. کنفرانس بین‌المللی دستاوردهای نوین در علوم و تکنولوژی.
  6. عندلیب، داوود و شمس، سعیده. (1399). شناسایی و مدل‌سازی توانمند سازهای SCM سبز در صنایع کوچک و متوسط،کاوش‌های مدیریت بازرگانی، 12(23)، 169-193.
  7. الفت، لعیا؛ خاتمی فیروزآبادی، علی و خداوردی، روح‌الله. (1390). مقتضیات تحقق SCM سبز در صنعت خودروسازی ایران، علوم مدیریت ایران، 6(21)، 123-140.
  8. مهاجری، شراره؛ آقایی پور، یوسف و پیردستان، مسعود. (1398). شناسایی و اولویت‌بندی عوامل مؤثر بر SCM سبز در ایران‌خودرو، نخبگان علوم و مهندسی، 4(3)، 111-122.
  9. نجفی، طاهره. (1394). مدیریت زنجیره تأمین سبز، مدیریت نوین قرن 21. کنفرانس بین‌المللی پژوهش‌های نوین در مدیریت و مهندسی صنایع.
  10. همایون‌فر، مهدی؛ گودرزوند چگینی، مهرداد و دانشور، امیر. (1397). اولویت‌بندی تأمین‌کنندگان زنجیره تأمین سبز با استفاده از رویکرد ترکیبی MCDM فازی،تحقیق در عملیات در کاربردهای آن (ریاضی کاربردی سابق)،15(2)، 41-61.
  11. Aamer, A. M., Al-Awlaqi, M. A., Affia, I., Arumsari, S., & Mandahawi, N. (2021). The internet of things in the food supply chain: adoption challenges. Benchmarking: An International Journal. 28(8), 2521-2541.
  12. Aamer, A. M., Al-Awlaqi, M. A., Affia, I., Arumsari, S., & Mandahawi, N. (2021). The internet of things in the food supply chain: adoption challenges. Benchmarking: An International Journal. 28(8), 2521-2541.
  13. Abdel-Basset, M., Manogaran, G., & Mohamed, M. (2018). Internet of Things (IoT) and its impact on supply chain: A framework for building smart, secure and efficient systems. Future Generation Computer Systems86, 614-628.
  14. Ashraf, S., Saleem, S., Chohan, A. H., Aslam, Z., & Raza, A. (2020). Challenging strategic trends in green supply chain management.  J. Res. Eng. Appl. Sci. JREAS5(2), 71-74.
  15. Baker, S. B., Xiang, W., & Atkinson, I. (2017). Internet of things for smart healthcare: Technologies, challenges, and opportunities. IEEE, 5, 21-44.
  16. Cui, H. (2021). Intelligent Coordination Distribution of the Whole Supply Chain Based on the Internet of Things. Complexity1-12.
  17. Humphrey-Murto, S., & de Wit, M. (2019). The Delphi method—more research please. Journal of clinical epidemiology106, 136-139.
  18. Jiang, W. (2019). An intelligent supply chain information collaboration model based on Internet of Things and big data. IEEE Access7, 24-35.
  19. Kenaria, Z. D., & Bahramimianroodb, B. (2021). Selection of factors affecting the supply chain and green suppliers by the TODIM method in the dairy industry. Sustainable development. 1(6), 24-36.
  20. Končar, J., Vučenović, S., & Marić, R. (2020). Green supply chain management in retailing based on internet of things. In Integration of Information Flow for Greening Supply Chain Management, 181-202.
  21. Lee, W. and S. Shin. )2019(. An empirical study of consumer adoption of Internet of Things services. International Journal of Engineering and Technology Innovation, 9(1): 1 -11.
  22. Li, L. (2011, March). Application of the internet of thing in green agricultural products supply chain management. In 2011 Fourth International Conference on Intelligent Computation Technology and Automation(Vol. 1, pp. 1022-1025). IEEE.
  23. Luthra, S., Garg, D., Haleem, A. )2016 (. The impacts of critical success factors for implementing green supply chain management towards sustainability: an empirical investigation of Indian automobile industry. Clean. Prod. 121,145e148.
  24. Machado, H., & Shah, K. (2016). Internet of Things (IoT) impacts on supply chain. APICS Houst. Student Chapter77007(402).
  25. Malik, P. K., Sharma, R., Singh, R., Gehlot, A., Satapathy, S. C., Alnumay, W. S., & Nayak, J. (2021). Industrial Internet of Things and its applications in industry 4.0: State of the art. Computer Communications, 166, 125-139.
  26. Manavalan, E., & Jayakrishna, K. (2019). A review of Internet of Things (IoT) embedded sustainable supply chain for industry 4.0 requirements. Computers & Industrial Engineering127, 925-953.
  27. Mastos, T. D., Nizamis, A., Vafeiadis, T., Alexopoulos, N., Ntinas, C., Gkortzis, D., & Tzovaras, D. (2020). Industry 4.0 sustainable supply chains: An application of an IoT enabled scrap metal management solution.Journal of cleaner production, 269, 122377.
  28. Mohanty, R.P., Prakash, A. )2014(. Green supply chain management practices in India: an empirical study. Prod. Contr. 25, 1322e1337.
  29. Nahr, J. G., Nozari, H., & Sadeghi, M. E. (2021). Green supply chain based on artificial intelligence of things (AIoT). International Journal of Innovation in Management, Economics and Social Sciences1(2), 56-63.
  30. Nasrollahi, M., & Razmi, J. (2021). A mathematical model for designing an integrated pharmaceutical supply chain with maximum expected coverage under uncertainty. Operational Research21(1), 525-552.
  31. Nozari, H., Fallah, M., & Szmelter-Jarosz, A. (2021). A conceptual framework of green smart IoT-based supply chain management. International Journal of Research in Industrial Engineering10(1), 22-34.
  32. Paksoy, T., & Garza-Reyes, J. A. (2020). The New Challenge of Industry 4.0: Sustainable Supply Chain Network Design with Internet of Things. In Logistics 4.0(pp. 51-64). CRC Press.
  33. Popkova, E. G., Egorova, E. N., Popova, E., & Pozdnyakova, U. A. (2019). The model of state management of economy on the basis of the internet of things. In Ubiquitous Computing and the Internet of Things: Prerequisites for the
  34. Prajapati, D., Chan, F. T., Chelladurai, H., Lakshay, L., & Pratap, S. (2022). An Internet of Things Embedded Sustainable Supply Chain Management of B2B E-Commerce.Sustainability, 14(9), 5066.
  35. Ramesh, A., Banwet, D.K., Shankar, R. (2010). Modeling the barriers of supply chain collaboration. Journal of Modelling in Management, 5(2), 176 – 193.
  36. Rane, S. B., Thakker, S. V., & Kant, R. (2021). Stakeholders' involvement in green supply chain: a perspective of blockchain IoT-integrated architecture. Management of Environmental Quality: An International Journal, 32(6), 1166-1191.
  37. Shafique, M. N., Rashid, A., Bajwa, I. S., Kazmi, R., Khurshid, M. M., & Tahir, W. A. (2018). Effect of IoT capabilities and energy consumption behavior on green supply chain integration. Applied Sciences8(12), 2481.
  38. Sharma, V. K., Chandna, P., & Bhardwaj, A. (2017). Green supply chain management related performance indicators in agro industry: A review. Journal of cleaner production141, 1194-1208.
  39. Short, J. C., Broberg, J. C., Cogliser, C. C., & Brigham, K. H. (2010). Construct validation using computer-aided text analysis (CATA) an illustration using entrepreneurial orientation. Organizational Research Methods13(2), 320-347.
  40. Skulmoski, G. J., Hartman, F. T., & Krahn, J. (2007). The Delphi method for graduate research. Journal of Information Technology Education: Research6(1), 1-21.
  41. Suguna, S. K., & Kumar, S. N. (2019). Application of cloud computing and internet of things to improve supply chain processes. In Edge Computing(pp. 145-170). Springer, Cham.
  42. Varriale, V., Cammarano, A., Michelino, F., & Caputo, M. (2021). Sustainable supply chains with blockchain, IoT and RFID: A simulation on order management.Sustainability, 13(11), 6372.
  43. Verovska, L., & Leontyev, A. (2017). Use of the tax prism method when forming tax part of the budget. Economics and Culture, 128.
  44. Yadav, S., Luthra, S., & Garg, D. (2021). Modelling Internet of things (IoT)-driven global sustainability in multi-tier agri-food supply chain under natural epidemic outbreaks. Environmental Science and Pollution Research28(13), 16633-16654.
  45. Yan, B., & Huang, G. (2009, August). Supply chain information transmission based on RFID and internet of things. In 2009 ISECS International colloquium on computing, communication, control, and management(Vol. 4, pp. 166-169). IEEE.
  46. Zhang, S., Ye, K., & Wang, M. (2021). A simple consistent Bayes factor for testing the Kendall rank correlation coefficient. arXiv preprint arXiv:2105.00364.