نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد مدیریت، گروه مدیریت، دانشکده مدیریت و علوم مالی، دانشگاه خاتم، تهران، ایران

2 استادیار، گروه مدیریت، دانشکده مدیریت و علوم مالی، دانشگاه خاتم، تهران، ایران

3 دانشیار، گروه مدیریت، دانشکده مدیریت و علوم مالی، دانشگاه خاتم، تهران، ایران.

چکیده

انتخاب مسیر در شبکه‌های حمل‌ونقل چندوجهی یکی از مسائل کلیدی در مدیریت و برنامه‌ریزی حمل‌ونقل است که با توجه به ماهیت چندوجهی و پیچیدگی‌های ناشی از عدم قطعیت، نیازمند رویکردهای پیشرفته در مدل‌سازی و بهینه‌سازی است. هدف این پژوهش ارائه یک مدل ریاضی چندهدفه برای انتخاب مسیر بهینه در شبکه‌ حمل‌ونقل چندوجهی است که در آن هزینه‌های حمل‌ونقل، انتشار کربن و انحراف زمان ارسال به حداقل برسد ضمن اینکه ارزش کالا حفظ شود. این مدل با در نظر گرفتن پنجره‌های زمانی و مدیریت عدم قطعیت، به دنبال ارائه راه‌حل‌های پایدار برای بهبود عملکرد سیستم‌های حمل‌ونقل است. در این مدل ظرفیت و تقاضا حمل‌ونقل در هر دوره ثابت و هزینه‌ها و زمان غیر قطعی هستند. خروجی حل این مدل انتخاب مسیر و حالات حمل‌ونقل به گونه‌ای است که اهداف مدل بهینه شود. همچنین از رویکرد بهینه‌سازی استوار برای مدیریت عدم قطعیت‌ و ارائه مدلی که در شرایط غیرقطعی نیز قابلیت اطمینان خود را حفظ کند، استفاده شده است. به‌منظور اعتبارسنجی مدل، یک مثال عددی شبکه حمل‌ونقل چندوجهی با رویکرد برنامه‌ریزی آرمانی حل شده است. نتایج نشان می‌دهند که مدل پیشنهادی با استفاده از بهینه‌سازی استوار، انعطاف‌پذیری لازم برای تطبیق با تغییرات را دارد و می‌تواند به بهبود کیفیت خدمات و کاهش هزینه‌های عملیاتی کمک کند. همچنین استفاده از رویکرد بهینه‌سازی استوار در شبکه حمل‌ونقل چندوجهی منجر به افزایش تاب‌آوری و کارایی شبکه می‌گردد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

A goal programming model for robust routing of multimodal transportation networks under uncertainty

نویسندگان [English]

  • Maryam Tajik Khaveh 1
  • Maryam Daneshvar 2
  • Seyed Hossein Razavi Hajiagha 3

1 .Master of industrial management, Management Dept, Faculty of Management and Finance, Khatam University, Tehran, Iran.

2 Assistant Professor, Management Dept, Faculty of Management and Finance, Khatam University, Tehran, Iran.

3 Associate Professor, Management Dept, Faculty of Management and Finance, Khatam University, Tehran, Iran.

چکیده [English]

Route selection in multimodal transport networks is a key issue in transport management and planning that requires advanced modeling and optimization approaches due to the multimodal nature and complexities arising from uncertainty. This study aims to develop a multi-objective mathematical model for optimal route selection in multimodal transportation networks, simultaneously minimizing transportation costs, carbon emissions, and delivery time deviations while preserving cargo value. This model, by considering time windows and uncertainty management, seeks to provide sustainable solutions to improve the transport system’s performance. In this model, transport capacity and demand are assumed to be fixed in each period, and costs and time are uncertain. The output of the model determines optimal routes and transport modes to achieve the defined objectives. Also, a robust optimization approach is used to manage uncertainty and provide a model that maintains its reliability even under uncertain conditions. In order to validate the model, a numerical example of a multimodal transportation network is solved using the goal programming approach. The results show that the proposed model, using robust optimization, has the necessary flexibility to adapt to changes and can help improve the quality of service and reduce operating costs. Also, using the robust optimization approach in a multimodal transportation network leads to increased resilience and network efficiency.
Introduction
The advancement of economic globalization and information technology has significantly facilitated global communication. A singular mode of transportation is insufficient to satisfy the demands of the transportation market, leading to the emergence of multimodal transportation (Peng et al., 2023). The route selection strategy of a multimodal transportation network is a complex multi-objective decision-making problem that has become a key aspect of multimodal transportation systems (Elbert et al., 2020).
In this research, the multimodal transportation structure is a network structure with nodes (terminals) and edges (transportation) representing multiple modes of transportation. Also, in the research conducted, the objectives related to reducing travel time have been considered, while in the real world, arriving on time is preferable to arriving early. Hence, adding a time window to the objective functions is one of the innovations of this study.
Considering uncertainty factors in the decision-making process is essential for designing optimal routes. Robust optimization, as one of the approaches in the field of uncertainty management, has the ability to provide models that enable better decision-making by maintaining stability and efficiency in uncertain conditions. In this study, a multi-objective robust optimization model is developed to minimize the total transportation cost, delivery delays, and carbon emissions while maintaining the value of perishable goods, considering the time window for timely arrival of goods.
According to the above, the innovations of this paper are as follows:

Adding time windows to objective functions.
Defining the value function of perishable goods.
Combining uncertainty in time and cost with the perishability factor.
Considering uncertainty with a robust optimization approach.

 
Research background
Multimodal freight transport means the transport of goods by at least two different modes of transport (UNECE, 2009). This type of transport ensures the efficiency of transport in terms of the timely availability of products and raw materials. This method usually involves a combination of land (truck, train), sea (ship), and air transport. The main feature of multimodal transport is that even if several modes of transport are used, the transport process is managed under a single contract or general responsibility, which helps to reduce delays, improve efficiency, and reduce transport risks. Other advantages of this transport method include cost reduction through the optimal use of different modes of transport, the possibility of using the fastest transport methods in specific conditions, and increased transparency and damage reduction through integrated management. The combination of methods can also help reduce energy consumption and greenhouse gas emissions. For a transport system to be efficient, it must be multimodal to meet different needs. Hence, the importance of multimodal transport lies in its ability to improve efficiency, reduce costs, and enhance delivery speed by strategically combining different modes of transport (Udomwannakhet et al., 2018).
Methodology
The main objective of this research is to develop a mathematical model for route selection in a multimodal transportation network. Therefore, this research is applied research conducted within the positivist paradigm. In order to collect research data, information related to multimodal transportation networks has been extracted from reports, databases, and scientific articles. Since the routing problem formulated in this paper is a multi-objective problem, weighted goal programming (GP) is used to solve it. To account for the uncertainty in the parameters of transportation cost and time, the Bertsimas and Sim robust optimization approach is applied, and a robust goal programming model has also been formulated.
 
Discussion and Results
To verify the validity of the model, real data and numerical scenarios have been used. The results of solving the model show that the proposed model is able to provide optimal paths considering uncertainty and multiple objectives (cost reduction, carbon emission reduction, and product value preservation). Solving the model and specifying the values of the decision variables indicate the structural coherence and feasibility of the model. One of the main validation criteria in mathematical modeling is the ability of the model to provide a justified and optimal solution. In addition, the model results are consistent with the logic of the problem and the defined constraints. Also, the proposed model has been solved using the goal programming method, which is one of the valid methods for solving multi-objective optimization problems. Furthermore, the sensitivity analysis of key parameters shows that the model behaves stably in response to changes in input parameters and that its outputs are reasonable and reliable.
 
Conclusion
The findings indicate that integrating multiple transportation modes and optimizing routing decisions can significantly reduce total costs. Furthermore, the incorporation of time windows and the reduction of delivery time deviation enhance customer satisfaction compared to conventional models. The study confirms that the robust optimization model can recommend routes that maintain high levels of stability and efficiency, even in the presence of uncertainty. The model also accounts for the perishability of goods, thereby contributing to waste reduction. Overall, the proposed model improves the performance of transportation systems under uncertain conditions, lowers costs, improves productivity, and offers a practical solution applicable across various industries.

کلیدواژه‌ها [English]

  • Routing
  • Multimodal Transportation network
  • Robust Optimization
  • Uncertainty
  • Time Window
  •  
  1. ارشادی، محمدمهدی، مؤمنی شریف‌آباد، مهسا، ارشادی، محمدجواد، عزیزی، امیر، و بهزادی پور، سمانه. (1402). مدل‌سازی چندهدفه مسیریابی سبز با استفاده از الگوریتم ترکیبی یادگیری ماشین حداکثری و برنامه‌ریزی ژنتیک. مدیریت زنجیره تأمین، (81) 25، 41-17. 1001.1.20089198.1402.25.81.2.0
  2. افندی زاده، شهریار، گلشن خواص، رضا، نیکزاد، محمد حسن و بیگدلی، حمید. (1403). ساخت مدل بهینه سازی حمل و نقل ترکیبی در زنجیره تأمین کالا. پژوهشنامه حمل و نقل، (آماده انتشار). https:/‌/‌www.trijournal.ir/‌article_209483.html
  3. برادران، وحید و آذری خواه، ارمغان. (1399). ارائه مدل چندهدفه مسیریابی در شبکه سیستم‌های حمل‌و‌نقل عمومی چندوجهی درون‌شهری. مطالعات مدیریت صنعتی، (57) 18، 375-345. https:/‌/‌doi.org/‌10.22054/‌jims.2018.25088.1864
  4. حبیب زاده بیژنی، سحر و صاحبی، هادی. (1403). طراحی شبکه حمل و نقل پسماندهای صنعتی خطرناک با در نظر گرفتن ریسک وابسته به زمان. پژوهشنامه حمل و نقل، 21(4)، 379-392. https:/‌/‌doi.org/‌10.22034/‌tri.2021.246098.2807
  5. حسن پور،  حسینعلی؛ فتاحی، حسن و خلیلی، حسین. (1402). حمل‌ونقل چندوجهی: رویکردها، فرآیند شکل گیری، مزایا، معایب و محدودیت‌های پیاده سازی. مدیریت زنجیره تأمین، 25(81)، 117-132. https:/‌/‌civilica.com/‌doc/‌1942311/‌
  6. ربانی، یوسف و سپهری، محمدمهدی و ذگردی، سیدحسام الدین، 1387، مساله مسیریابی وسیله نقلیه متصل به حمل ونقل چندوجهی رویکردیکپارچه. پژوهشنامه حمل و نقل،5 (4)، 318-307. https:/‌/‌sid.ir/‌paper/‌83674/‌fa
  7. رحیمی، امیرمسعود، یادگاری، بهناز و ابوطالبی اصفهانی، محسن. (1403). توسعه الگوریتم ترکیبی ازدحام گربه‌ها با عملگرهای ژنتیکی برای حل مسئله مسیریابی وسیله نقلیه با محدودیت پنجره زمانی. مجله‌ی مهندسی عمران شریف، 40(4)، ۹5-۸5. https:/‌/‌doi.org/‌10.24200/‌j30.2024.63335.3268
  8. عباسی عقدا، علی، موحدی، محمدمهدی، و شایان نیا، سیداحمد. (1401). طراحی شبکه زنجیره تأمین با رویکرد مسیریابی وسیله نقلیه و پنجره زمانی و استفاده از الگوریتم جستجوی نیروی گرانشی. اندیشه آماد، 21(81)، 21-44. https:/‌/‌sid.ir/‌paper/‌1036866/‌en
  9. علی نژاد، حامد، یعقوبی، سعید و حسینی مطلق، سید مهدی. (1401). ارائه یک رویکرد فازی برای مساله مسیریابی وسایل نقلیه با گذاشت و برداشت همزمان و پنجره‌های زمانی با استفاده از الگوریتم PSO بهبودیافته (مطالعه‌موردی شرکت فراورده‌های لبنی رامک). مطالعات مدیریت صنعتی، (64) 20، 215-250. https:/‌/‌doi.org/‌10.22054/‌jims.2020.22463.1778
  10. علی‌نژاد، علیرضا، کاظمی، ابوالفضل و کریمی، مرضیه. (1399). ارائه یک مدل چند هدفه برای مسئله مکان یابی مسیریابی با - در نظر گرفتن حداقل ریسک و حداکثر پوشش تقاضا. مطالعات مدیریت صنعتی، (58) 18، 138-105. https:/‌/‌doi.org/‌10.22054/‌jims.2020.36793.2184
  11. معماریانی، عزیزا... . (1378). روش‌های برنامه‌ریزی آرمانی فازی. فصلنامه دانش مدیریت، (46) 12، 34-23 https:/‌/‌jmk.ut.ac.ir/‌article_13462_88566f0e31a92fb7d60325aa71bdbf11.pdf?lang=en
  12. نعمت نیا، رسول، خادمی، مریم، فتحی، کیامرث و سردار، سهیلا. (1404). مسیریابی مناسب وسایط نقلیه همراه با مکان‌یابی هاب و پنجره زمانی به کمک الگوریتم‌های فراابتکاری (مورد مطالعه: شرکت دخانیات). پژوهشنامه حمل و نقل، 2(22)،518-501. https:/‌/‌doi.org/‌10.22034/‌tri.2024.447410.3234
  13.  De Oliveira, F., Volpi, N. M. P., & Sanquetta, C. R. (2003). Goal programming in a planning problem. Applied mathematics and computation, 140(1), 165–178. https:/‌/‌doi.org/‌10.1016/‌S0096-3003(02)00220-5
  14. Elbert, R., Müller, J. P., & Rentschler, J. (2020). Tactical network planning and design in multimodal transportation–A systematic literature review. Research in Transportation Business & Management, 35, 100462. https:/‌/‌doi.org/‌10.1016/‌j.rtbm.2020.100462
  15. Fazayeli, S., Eydi, A., & Kamalabadi, I. N. (2018). Location-routing problem in multimodal transportation network with time windows and fuzzy demands: Presenting a two-part genetic algorithm. Computers & Industrial Engineering, 119, 233–246. https:/‌/‌doi.org/‌10.1016/‌j.cie.2018.03.041
  16. Ge, Y., Sun, Y., & Zhang, C. (2024). Modeling a Multimodal Routing Problem with Flexible Time Window in a Multi-Uncertainty Environment. Systems, 12(6), 212. https:/‌/‌doi.org/‌10.3390/‌systems12060212.
  17. Guo, F., Xu, Y., Huang, Z., & Wu, Y. (2024). Collaborative optimization of routing and storage strategy of multi-period multimodal transport in an uncertain environment. Computers & Operations Research, 167, 106676. https:/‌/‌doi.org/‌10.1016/‌j.cor.2024.106676
  18. Koohathongsumrit, N., & Chankham, W. (2022). A hybrid approach of fuzzy risk assessment-based incenter of centroid and MCDM methods for multimodal transportation route selection. Cogent Engineering, 9(1), 2091672. https:/‌/‌doi.org/‌10.1080/‌23311916.2022.2091672
  19. Koohathongsumrit, N., & Chankham, W. (2023). Route selection in multimodal supply chains: A fuzzy risk assessment model-BWM-MARCOS framework. Applied Soft Computing, 137, 110167. https:/‌/‌doi.org/‌10.1016/‌j.asoc.2023.110167
  20. Koohathongsumrit, N., & Meethom, W. (2021). An integrated approach of fuzzy risk assessment model and data envelopment analysis for route selection in multimodal transportation networks. Expert Systems with Applications, 171, 114342. https:/‌/‌doi.org/‌10.1016/‌j.eswa.2020.114342
  21. Li, L., Zhang, Q., Zhang, T., Zou, Y., & Zhao, X. (2023). Optimum Route and Transport Mode Selection of Multimodal Transport with Time Window under Uncertain Conditions. Mathematics, 11(14), 3244. https:/‌/‌doi.org/‌10.3390/‌math11143244
  22. Lu, W., Choi, S.-B., & Yeo, G.-T. (2022). Resilient route selection of oversized cargo transport: the case of South Korea–Kazakhstan. The International Journal of Logistics Management, 33(2), 410–430. https:/‌/‌doi.org/‌10.1108/‌IJLM-11-2020-0445
  23. Lu, Y., Chen, F., & Zhang, P. (2022). Multi objective Optimization of Multimodal Transportation Route Problem Under Uncertainty. Engineering Letters, 30. (4).
  24. Pang, Y., Pan, S., & Ballot, E. (2023). Robust optimization for perishable product distribution under uncertainty of multimodal transportation services. IFAC-Papers Online, 56(2), 7620–7625. https:/‌/‌doi.org/‌10.1016/‌j.ifacol.2023.10.1159
  25. Peng, Y., Gao, S. H., Yu, D., Xiao, Y. P., & Luo, Y. J. (2023). Multi-objective optimization for multimodal transportation routing problem with stochastic transportation time based on data-driven approaches. RAIRO-Operations Research, 57(4), 1745–1765. https:/‌/‌doi.org/‌10.1051/‌ro/‌2023090
  26. Peng, Y., Yong, P., & Luo, Y. (2021). The route problem of multimodal transportation with timetable under uncertainty: multi-objective robust optimization model and heuristic approach. RAIRO - Operations Research, 55, S3035–S3050. https:/‌/‌doi.org/‌10.1051/‌ro/‌2020110
  27. Romero, C. (2004). A general structure of achievement function for a goal programming model. European Journal of Operational Research, 153(3), 675-686.‏ https:/‌/‌doi.org/‌10.1016/‌S0377-2217(02)00793-2
  28. SteadieSeifi, M., Dellaert, N., & Van Woensel, T. (2021). Multi-modal transport of perishable products with demand uncertainty and empty repositioning: A scenario-based rolling horizon framework. EURO Journal on Transportation and Logistics, 10, 100044. https:/‌/‌doi.org/‌10.1016/‌j.ejtl.2021.100044
  29. Sun, Y. (2020). A fuzzy multi-objective routing model for managing hazardous materials door-to-door transportation in the road-rail multimodal network with uncertain demand and improved service level. IEEE Access, 8, 172808–172828. https:/‌/‌doi.org/‌10.1109/‌ACCESS.2020.3025315
  30. Udomwannakhet, J., Vajarodaya, P., Manicho, S., Kaewfak, K., Ruiz, J. B., & Ammarapala, V. (2018). A review of multimodal transportation optimization model. 5th International Conference on Business and Industrial Research (ICBIR), https:/‌/‌doi.org/‌10.1109/‌ICBIR.2018.8391217
  31. Zhang, H., Huang, Q., Ma, L., & Zhang, Z. (2024). Sparrow search algorithm with adaptive t distribution for multi-objective low-carbon multimodal transportation planning problem with fuzzy demand and fuzzy time. Expert Systems with Applications, 238, 122042. https:/‌/‌doi.org/‌10.1016/‌j.eswa.2023.122042
  32. Zhang, X., Jin, F.-Y., Yuan, X.-M., & Zhang, H.-Y. (2021). Low-carbon multimodal transportation path optimization under dual uncertainty of demand and time. Sustainability, 13(15), 8180. https:/‌/‌doi.org/‌10.3390/‌su13158180
  33. Zhu, C., & Zhu, X. (2022). Multi-objective path-decision model of multimodal transport considering uncertain conditions and carbon emission policies. Symmetry, 14(2), 221. https:/‌/‌doi.org/‌10.3390/‌sym14020221
  34. Zhu, W., Wang, H., & Zhang, X. (2021). Synergy evaluation model of container multimodal transport based on BP neural network. Neural Computing and Applications, 33(9), 4087–4095. https:/‌/‌doi.org/‌10.1007/‌s00521-020-05584-1