نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشجوی دکتری، گروه مهندسی صنایع، دانشکده مدیریت و مهندسی صنایع، دانشگاه صنعتی مالک اشتر، تهران، ایران
2 استادیار، گروه مهندسی صنایع، دانشکده مدیریت و مهندسی صنایع، دانشگاه صنعتی مالک اشتر، تهران، ایران
3 دانشیار، گروه مهندسی صنایع، دانشکده مدیریت و مهندسی صنایع، دانشگاه صنعتی مالک اشتر، تهران، ایران
چکیده
ارزیابی تأمینکنندگان در موفقیت مگاپروژههای ماژولار نقشی تعیینکننده دارد؛ زیرا این پروژهها بهواسطهی نیاز به هماهنگی پیچیدهی زیرسیستمهای گوناگون و یکپارچگی دقیق ماژولها، مستلزم همکاری با تأمینکنندگانی توانمند هستند. هدف این تحقیق ارائه یک چارچوب یکپارچه جهت ارزیابی تامینکنندگان مگاپروژههای ماژولار است. در این پژوهش، برای اولین بار جهت ارزیابی تامینکنندگان از رویکرد ترکیبی مبتنی بر روشهای LOPCOW و ARTASI توسعهیافته بر اساس مجموعههای فازی کروی (SF-LOPCOW و SF-ARTASI) استفاده شده است. این رویکرد قادر است همزمان با عدم قطعیت و تصمیمگیری گروهی مقابله کند. بر اساس این رویکرد، ۳۱ معیار مبتنی بر ابعاد پایداری برای فرایند ارزیابی تامینکنندگان مگاپروژههای ماژولار شناسایی شده است. سپس، با استفاده از روش SF-LOPCOW وزندهی به معیارها انجام میشود. بر اساس نتایج این مرحله، هزینه، استراتژی و سازماندهی و میزان پسماند تولیدی به ترتیب با ۰.۰۸۷، ۰.۰۸۳ و ۰.۷۹ بیشترین وزنها را به خود اختصاص دادند. در آخر، بر اساس یک مطالعه موردی ۱۲ شرکت تامینکننده تعیین شده برای مسئله ارزیابی تامینکنندگان مگاپروژههای ماژولار از طریق روش SF-ARTASI ارزیابی و اولویتبندی میگردند. مقایسه نتایج SF-ARTASI با سایر روشهای تصمیمگیری چند معیاره موجود در ادبیات و همچنین تحلیل حساسیت، کارآمدی رویکرد پیشنهادی و پایداری رتبهبندی آن را در سناریوهای مختلف نشان میدهد.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Evaluation of Suppliers in Modular Megaprojects Using LOPCOW-ARTASI in an Uncertain Environment
نویسندگان [English]
- Ali Memarpour Ghiaci 1
- morteza abbasi 2
- Jafar Gheidar-Kheljani 3
1 Ph.D Student, Industrial Engineering Department, Malek Ashtar University of Technology, Tehran 1774-15875, Iran
2 Assistant Professor, Industrial Engineering Department, Malek Ashtar University of Technology, Tehran 1774-15875, Iran
3 Associate Professor, Industrial Engineering Department, Malek Ashtar University of Technology, Tehran 1774-15875, Iran
چکیده [English]
Abstract
Supplier evaluation plays a pivotal role in the success of modular megaprojects, as these projects require capable suppliers due to the necessity for complex coordination among various subsystems and the precise integration of modules. This study proposes an integrated framework for the evaluation of suppliers in modular megaprojects. For the first time, this research applies a novel integrated approach based on the LOPCOW and ARTASI methods, extended using spherical fuzzy sets (SF-LOPCOW and SF-ARTASI) for supplier evaluation. Based on this approach, 31 sustainability-oriented criteria have been identified for evaluating suppliers in modular megaprojects. The criteria are first weighted using the SF-LOPCOW method. Subsequently, in a case study, 12 suppliers identified for a modular megaproject are evaluated and prioritized using the SF-ARTASI method. A comparison of the SF-ARTASI results with other existing multi-criteria decision-making methods in the literature, along with a sensitivity analysis, demonstrates the effectiveness of the proposed approach and the robustness of its results under different scenarios.
Introduction
With the rapid expansion of the global economy, investment in large-scale projects worldwide has increased markedly over the past few decades. Projects with costs of one billion dollars or more are recognized as megaprojects. Megaprojects are inherently associated with growth, development, and competitiveness, acting as the infrastructure of globalization. Modularization is a key driver for reducing the time and cost of megaprojects. With the modularization of megaprojects, the evaluation and selection of suppliers acquire particular importance. The question therefore arises: how can suppliers for modular megaprojects be evaluated in the long term while concurrently reducing project delays? The present study concentrates on this critical issue, which can assist project and megaproject managers from a sustainable development perspective. First, it is essential to collect core criteria from various dimensions—economic, environmental, and social—to evaluate a sustainable supplier; then, by employing a multi-criteria decision-making (MCDM) method, the relative importance of these criteria is determined, and suppliers are subsequently evaluated and prioritized. The supplier evaluation problem is complex and involves uncertainty across all sustainability dimensions (economic, environmental, and social).
The main objective of this study is to evaluate and prioritize suppliers of modular megaprojects by proposing a novel approach under uncertainty. This study intends, for the first time, to apply the developed SF-LOPCOW-ARTASI method to the supplier evaluation problem. This method is capable of handling both uncertainty and group decision-making simultaneously. In this research, the supplier evaluation problem for megaprojects is, for the first time, conducted based on sustainability dimensions within a spherical fuzzy environment. The approach is presented for the first time by using the LOPCOW method developed on the basis of spherical fuzzy sets (SF-LOPCOW) to weight the criteria, and the ARTASI method developed on the basis of spherical fuzzy sets (SF-ARTASI) to prioritize suppliers of modular megaprojects.
Method
The present study employs an integrated approach. In the first stage, supplier evaluation criteria are identified and, after defining the alternatives, data derived from the judgments of the decision-making team are collected as linguistic variables based on spherical fuzzy sets. Subsequently, following the evaluation of suppliers against the identified criteria, the criteria weights are calculated using the SF-LOPCOW method. Finally, by implementing the SF-ARTASI method, suppliers are assessed according to the criteria and prioritized. Using purposive sampling, the decision-making team consisted of eleven experts with experience and specialization in management systems implementation consultancy, engineering, and project and megaproject management. Information on the members indicates that the majority of the expert team have between eight and fourteen years of professional experience.
Discussion and Results
To illustrate the applicability of the proposed approach, suppliers for modular megaprojects were evaluated and prioritized using this approach. In this study, twelve suppliers were assessed and ranked using 31 evaluation criteria. First, each supplier was evaluated by the decision-making team according to the identified criteria using linguistic variables based on spherical fuzzy sets. Given the uncertainty inherent in the evaluation criteria, spherical fuzzy sets were employed to address this uncertainty. The relative importance of the criteria was then determined using the developed LOPCOW method based on spherical fuzzy sets. According to this method, cost, strategy and organization, and the amount of waste generated received the highest importance weights of 0.087, 0.083, and 0.079, respectively. Subsequently, using the proposed approach, suppliers were evaluated and prioritized by applying the developed ARTASI method based on spherical fuzzy sets, taking into account the evaluation criteria and their importance degrees. The results indicate that S3, S9, and S7 ranked first through third, respectively.
Finally, a sensitivity analysis was designed in the form of multiple scenarios to examine the relationship between the outcomes produced by the proposed approach under varying conditions and the study’s findings. This analysis investigated the variation in the final utility function and the resulting ranking of alternatives as the values of φ and α changed; in both cases, the ranges of variation were negligible and not statistically significant.
Conclusion
Due to the need for complex coordination among subsystems and precise integration of modules, the success of modular megaprojects largely depends on the evaluation and selection of capable suppliers. The present study introduces an integrated approach for supplier evaluation in modular megaprojects. Accordingly, a comprehensive list of sustainability criteria for evaluating and prioritizing suppliers of modular megaprojects was identified. The relative importance of these criteria was then determined using the SF-LOPCOW method. Subsequently, following the proposed approach, suppliers were evaluated and prioritized according to the criteria and their importance weights by applying the SF-ARTASI method. The limited number of experts in the field of megaproject management and the absence of weighting expert judgments according to their knowledge and experience represent limitations of this study. The use of aggregation operators to integrate expert judgments, such as the spherical weighted arithmetic mean (SWAM) operator, and the development and comparison of multi-criteria decision-making methods in other uncertain environments (e.g., Pythagorean fuzzy, q-rung, and Fermatean fuzzy sets), and comparing their results with the methods developed in the present study, are suggested for future research. Regardless of the case used to implement the proposed approach, the method is applicable to various supplier evaluation and selection scenarios for megaprojects. In future work, we will extend our research to optimize scheduling and reduce the completion time of modular megaprojects through the employment of appropriate suppliers.
کلیدواژهها [English]
- Megaproject management
- Modular megaprojects
- Supplier evaluation
- Multi-criteria decision-making
- Spherical fuzzy sets
- کشاورز قرابائی، مهدی. (۱۴۰۳). یک مدل چندهدفه مبتنی بر تصمیمگیری گروهی و مجموعههای فازی فیثاغورثی بازهای-مقدار برای مسئله انتخاب تأمینکننده و تخصیص سفارش. مطالعات مدیریت صنعتی، ۲۲ (۷۴)، ۱-۴۹. https://doi.org/10.22054/jims.2024.80903.2926
- معمارپور غیاثی، علی، عباسی، مرتضی و قیدرخلجانی، جعفر. (۱۴۰۴). ارزیابی علل افزایش زمان و هزینه مگاپروژهها با استفاده از رویکرد یکپارچه مبتنی بر روشهای بهترین-بدترین و مارکوس توسعهیافته بر اساس تئوری اعداد Z. چشمانداز مدیریت صنعتی، ۱۵ (۱)، ۷۳-۱۰۰. https://doi.org/10.48308/jimp.15.1.73
- معمارپور غیاثی، علی، عباسی، مرتضی، پیری، مرتضی و اخوان، پیمان. (۱۴۰۳). موانع پیادهسازی تکنولوژی بلاکچین در لجستیک بشردوستانه در شرایط عدم قطعیت. مطالعات مدیریت کسبوکار هوشمند، ۱۲ (۴۷)، ۱۵۳-۱۸۴. https://doi.org/10.22054/ims.2023.72916.2304
- Aljohani, A., Ahiaga-Dagbui, D., & Moore, D. (2017). Construction projects cost overrun: What does the literature tell us? International Journal of Innovation,
- Amindoust, A., Ahmed, S., Saghafinia, A., & Bahreininejad, A. (2012). Sustainable supplier selection: A ranking model based on fuzzy inference system. Applied Soft Computing, 12(6), 1668-1677. https://doi.org/10.1016/j.asoc.2012.01.023
- Ashkanani, S., & Franzoi, R. (2023). Gaps in megaproject management system literature: a systematic overview. Engineering, Construction and Architectural Management, 30(3), 1300-1318. https://doi.org/10.1108/ECAM-12-2021-1113
- Atanassov, K. T., & Atanassov, K. T. (1999). Intuitionistic fuzzy sets. Springer. https://doi.org/10.1007/978-3-7908-1870-3_1
- Cheraghalipour, A., & Farsad, S. (2018). A bi-objective sustainable supplier selection and order allocation considering quantity discounts under disruption risks: A case study in plastic industry. Computers & Industrial Engineering, 118, 237-250. https://doi.org/10.1016/j.cie.2018.02.04
- Christanto, S., Runtuk, J. K., & Ng, P. K. (2025). Optimizing Supplier Selection: A Comparative Study of Fuzzy Vikor and Fuzzy Moora for Performance-Based Decision Making. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3525362
- Çobanoğulları, G., Daldıran, K., & Daldıran, B. (2026). Analysis of Innovation Performance of South-Eastern European Countries in Transition Economies: An Application of the Entropy-Based ARTASI Method. Spectrum of Operational Research, 193-214. https://doi.org/10.31181/sor31202642
- Dang, P., Gao, H., Niu, Z., Geng, L., Hui, F. K. P., & Sun, C. (2024). The Supplier Selection of Prefabricated Component Production Line: A Lean-Based AHP–Improved VIKOR Framework. Buildings, 14(12), 4018. https://doi.org/10.3390/buildings14124018
- Dhruva, S., Krishankumar, R., Ravichandran, K. S., Kaklauskas, A., Zavadskas, E. K., & Gupta, P. (2025). Selection of waste treatment methods for food sources: an integrated decision model using q-rung fuzzy data, LOPCOW, and COPRAS techniques. Clean Technologies and Environmental Policy, 1-25. https://doi.org/10.1007/s10098-025-03160-6
- Durdu, D. (2025). Evaluating Financial Performance with SPC-LOPCOW-AROMAN Hybrid Methodology: A Case Study for Firms Listed in BIST Sustainability Index. Knowledge and Decision Systems with Applications, 1, 92-111. https://doi.org/10.59543/kadsa.v1i.13879
- Dündar, S. (2024). Project performance analysis of Turkish universities by LOPCOW-CRADIS methods. Journal of Turkish Operations Management, 8(2), 409-425. https://doi.org/10.56554/jtom.1336202
- Ecer, F., & Pamucar, D. (2022). A novel LOPCOW‐DOBI multi‐criteria sustainability performance assessment methodology: An application in developing country banking sector. Omega, 112, 102690. https://doi.org/10.1016/j.omega.2022.102690
- Ecer, F., Tanrıverdi, G., Yaşar, M., & Görçün, Ö. F. (2025). Sustainable aviation fuel supplier evaluation for airlines through LOPCOW and MARCOS approaches with interval-valued fuzzy neutrosophic information. Journal of Air Transport Management, 123, 102705. https://doi.org/10.1016/j.jairtraman.2024.102705
- Elkington, J., & Rowlands, I. H. (1999). Cannibals with forks: The triple bottom line of 21st century business. Alternatives Journal, 25(4), 42.
- Fallahpour, A., Nayeri, S., Sheikhalishahi, M., Wong, K. Y., Tian, G., & Fathollahi-Fard, A. M. (2021). A hyper-hybrid fuzzy decision-making framework for the sustainable-resilient supplier selection problem: a case study of Malaysian Palm oil industry. Environmental Science and Pollution Research, 1-21. https://doi.org/10.1007/s11356-021-12491-y
- Famiyeh, S., Amoatey, C. T., Adaku, E., & Agbenohevi, C. S. (2017). Major causes of construction time and cost overruns: A case of selected educational sector projects in Ghana. Journal of Engineering, Design and Technology, 15(2), 181-198. https://doi.org/10.1108/JEDT-11-2015-0075
- Flyvbjerg, B. (2014). What you should know about megaprojects and why: An overview. Project management journal, 45(2), 6-19. https://doi.org/10.1002/pmj.21409
- Flyvbjerg, B. (2021). Make megaprojects more modular. Harvard Business Review, 58-63
- Gao, Y., & Yu, A. (2025). A spherical fuzzy WASPAS approach to prioritize the factors enhancing the effectiveness of physical education classroom teaching. Scientific Reports, 15(1), 20875. https://doi.org/10.1038/s41598-025-05273-w
- Ghiaci, A. M., & Ghoushchi, S. J. (2023). Assessment of barriers to IoT-enabled circular economy using an extended decision-making-based FMEA model under uncertain environment. Internet of Things, 100719. https://doi.org/10.1016/j.iot.2023.100719
- Ghoushchi, S. J., Bonab, S. R., Ghiaci, A. M., Haseli, G., Tomaskova, H., & Hajiaghaei-Keshteli, M. (2021). Landfill site selection for medical waste using an integrated SWARA-WASPAS framework based on spherical fuzzy set. Sustainability, 13(24), 13950. https://doi.org/10.3390/su132413950
- Görçün, Ö. F., Tirkolaee, E. B., Küçükönder, H., & Garg, C. P. (2024). Assessing and selecting sustainable refrigerated road vehicles in food logistics using a novel multi-criteria group decision-making model. Information Sciences, 661, 120161. https://doi.org/10.1016/j.ins.2024.120161
- Hajiaghaei-Keshteli, M., Cenk, Z., Erdebilli, B., Özdemir, Y. S., & Gholian-Jouybari, F. (2023). Pythagorean fuzzy TOPSIS method for green supplier selection in the food industry. Expert Systems with applications, 224, 120036. https://doi.org/10.1016/j.eswa.2023.120036
- Hallak, J. (2024). Optimizing construction supplier selection in conflict-affected regions: a hybrid multi-criteria framework. Operations Management Research, 1-25. https://doi.org/10.1007/s12063-024-00505-0
- He, Q., Chen, X., Wang, G., Zhu, J., Yang, D., Liu, X., & Li, Y. (2019). Managing social responsibility for sustainability in megaprojects: An innovation transitions perspective on success. Journal of cleaner production, 241, 118395. https://doi.org/10.1016/j.jclepro.2019.118395
- Hendiani, S., Mahmoudi, A., & Liao, H. (2020). A multi-stage multi-criteria hierarchical decision-making approach for sustainable supplier selection. Applied Soft Computing, 94, 106456. https://doi.org/10.1016/j.asoc.2020.106456
- Hoseini, S. A., Fallahpour, A., Wong, K. Y., Mahdiyar, A., Saberi, M., & Durdyev, S. (2021). Sustainable supplier selection in construction industry through hybrid fuzzy-based approaches. Sustainability, 13(3), 1413. https://doi.org/10.3390/su13031413
- Hosseini, S. M., Paydar, M. M., & Hajiaghaei-Keshteli, M. (2021). Recovery solutions for ecotourism centers during the Covid-19 pandemic: Utilizing Fuzzy DEMATEL and Fuzzy VIKOR methods. Expert Systems with applications, 185, 115594. https://doi.org/10.1016/j.eswa.2021.115594
- Jafarzadeh Ghoushchi, S., Memarpour Ghiaci, A., Rahnamay Bonab, S., & Ranjbarzadeh, R. (2022). Barriers to circular economy implementation in designing of sustainable medical waste management systems using a new extended decision-making and FMEA models. Environmental science and pollution research, 29(53), 79735-79753. https://doi.org/10.1007/s11356-022-19018-z
- Jafarzadeh Ghoushchi, S., Shaffiee Haghshenas, S., Memarpour Ghiaci, A., Guido, G., & Vitale, A. (2022). Road safety assessment and risks prioritization using an integrated SWARA and MARCOS approach under spherical fuzzy environment. Neural Computing and Applications, 1-19. https://doi.org/10.1007/s00521-022-07929-4
- Jauhar, S. K., & Pant, M. (2017). Integrating DEA with DE and MODE for sustainable supplier selection. Journal of computational science, 21, 299-306. https://doi.org/10.1016/j.jocs.2017.02.011
- Kara, K., Yalçın, G. C., Kaygısız, E. G., Simic, V., Örnek, A. Ş., & Pamucar, D. (2024). A picture fuzzy CIMAS-ARTASI model for website performance analysis in human resource management. Applied Soft Computing, 162, 111826. https://doi.org/10.1016/j.asoc.111826
- Karamoozian, A., & Wu, D. (2020). A hybrid risk prioritization approach in construction projects using failure mode and effective analysis. Engineering, Construction and Architectural Management, 27(9), 2661-2686. https://doi.org/10.1108/ECAM-10-2019-0535
- Keleş, N., & Kahveci, A. (2025). EVALUATING THE LOGISTICS PERFORMANCE OF THE EU CANDIDATE AND MEMBER COUNTRIES USING THE WENSLO AND ARTASI METHODS. Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (68), 43-66. https://doi.org/10.30794/pausbed.1594714
- Khan, S. A., Kusi-Sarpong, S., Arhin, F. K., & Kusi-Sarpong, H. (2018). Supplier sustainability performance evaluation and selection: A framework and methodology. Journal of cleaner production, 205, 964-979. https://doi.org/10.1016/j.jclepro.2018.09.144
- Kou, G., Aydın, F. B., Eti, S., Yüksel, S., & Dinçer, H. (2025). A novel Spherical fuzzy MEREC-ARAS decision framework for optimizing innovation-driven investment strategies in energy systems. Energy Strategy Reviews, 59, 101771. https://doi.org/10.1016/j.esr.101771
- Kutlu Gündoğdu, F., & Kahraman, C. (2019). Spherical fuzzy sets and spherical fuzzy TOPSIS method. Journal of Intelligent & Fuzzy Systems, 36(1), 337-352. https://doi.org/10.3233/JIFS-181401
- Li, H., Cao, Y., & Su, L. (2022). Pythagorean fuzzy multi-criteria decision-making approach based on Spearman rank correlation coefficient. Soft Computing, 26(6), 3001-3012. https://doi.org/10.1007/s00500-021-06615-2
- Liang, R., Li, R., Yan, X., Xue, Z., & Wei, X. (2023). Evaluating and selecting the supplier in prefabricated megaprojects using extended fuzzy TOPSIS under hesitant environment: A case study from China. Engineering, Construction and Architectural Management, 30(5), 1902-1931. https://doi.org/10.1108/ECAM-09-2021-0793
- Lin, C., Chen, J., Feng, C., & Li, X. (2024). Optimizing supplier selection for prefabricated components: a comprehensive evaluation. Engineering, Construction and Architectural Management. https://doi.org/10.1108/ECAM-09-2024-1230
- Liu, H.-C., Quan, M.-Y., Li, Z., & Wang, Z.-L. (2019). A new integrated MCDM model for sustainable supplier selection under interval-valued intuitionistic uncertain linguistic environment. Information sciences, 486, 254-270. https://doi.org/10.1016/j.ins.2019.02.056
- Lotfi, Z. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
- Luthra, S., Govindan, K., Kannan, D., Mangla, S. K., & Garg, C. P. (2017). An integrated framework for sustainable supplier selection and evaluation in supply chains. Journal of cleaner production, 140, 1686-1698. https://doi.org/10.1016/j.jclepro.2016.09.078
- Mahmoudi, A., Deng, X., Javed, S. A., & Zhang, N. (2021). Sustainable supplier selection in megaprojects: grey ordinal priority approach. Business Strategy and the Environment, 30(1), 318-339. https://doi.org/10.1002/bse.2623
- Mani, V., Agrawal, R., & Sharma, V. (2014). Supplier selection using social sustainability: AHP based approach in India. International strategic management review, 2(2), 98-112. https://doi.org/10.1016/j.ism.2014.10.003
- Memari, A., Dargi, A., Jokar, M. R. A., Ahmad, R., & Rahim, A. R. A. (2019). Sustainable supplier selection: A multi-criteria intuitionistic fuzzy TOPSIS method. Journal of manufacturing systems, 50, 9-24. https://doi.org/10.1016/j.jmsy.2018.11.002
- Memarpour Ghiaci, A., Garg, H., & Jafarzadeh Ghoushchi, S. (2022). Improving emergency departments during COVID-19 pandemic: a simulation and MCDM approach with MARCOS methodology in an uncertain environment. Computational and Applied Mathematics, 41(8), 1-23. https://doi.org/10.1007/s40314-022-02080-1
- Mignacca, B., & Locatelli, G. (2021). Modular circular economy in energy infrastructure projects: Enabling factors and barriers. Journal of Management in Engineering, 37(5), 04021053. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000949
- Murugan, R. B., & Wong, K. Y. (2025). Sustainable Supplier Selection for Labelling Materials Used in a Herbicide Manufacturing Company. In Green Finance and Energy Transition: Innovation, Legal Frameworks and Regulation (pp. 147-158). Springer. https://doi.org/10.1007/978-3-031-75960-4_15
- Nadeem, M., Gyapong, E., & Ahmed, A. (2020). Board gender diversity and environmental, social, and economic value creation: Does family ownership matter? Business Strategy and the Environment, 29(3), 1268-1284. https://doi.org/10.1002/bse.2432
- Nişel, R., & Nişel, S. (2024). Advancing Global Innovation Metrics: A Comprehensive Country Ranking Using the Novel LOPCOW-CoCoSo Model. In Ethics and Sustainability in Accounting and Finance, Volume IV (pp. 99-118). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-4351-3_7
- Pamucar, D., Özçalıcı, M., & Gurler, H. E. (2025). Evaluation of the efficiency of world airports using WENSLO-ARTASI and Monte-Carlo simulation. Journal of Air Transport Management, 124, 102749. https://doi.org/10.1016/j.jairtraman.2025.102749
- Pamucar, D., Simic, V., Görçün, Ö. F., & Küçükönder, H. (2024). Selection of the best Big Data platform using COBRAC-ARTASI methodology with adaptive standardized intervals. Expert Systems with applications, 239, 122312. https://doi.org/10.1016/j.eswa.2023.122312
- Radovanović, M., Jovčić, S., Petrovski, A., & Cirkin, E. (2025). Evaluation of university professors using the spherical fuzzy AHP and grey MARCOS multi-criteria decision-making model: A case study. Spectrum of decision making and applications, 2(1), 198-218. https://doi.org/10.31181/sdmap21202518
- Rashidi, K., & Cullinane, K. (2019). A comparison of fuzzy DEA and fuzzy TOPSIS in sustainable supplier selection: Implications for sourcing strategy. Expert Systems with applications, 121, 266-281. https://doi.org/10.1016/j.eswa.2018.12.025
- Rong, Y., Yu, L., Liu, Y., Simic, V., & Garg, H. (2024). The FMEA model based on LOPCOW-ARAS methods with interval-valued Fermatean fuzzy information for risk assessment of R&D projects in industrial robot offline programming systems. Computational and Applied Mathematics, 43(1), 25. https://doi.org/10.1007/s40314-023-02532-2
- Rostami, A., & Oduoza, C. F. (2017). Key risks in construction projects in Italy: contractors’ perspective. Engineering, Construction and Architectural Management, 24(3), 451-462. https://doi.org/10.1108/ECAM-09-2015-0142
- Sahin, F., & Menekse, A. (2025). Internal control risk assessment using interval valued spherical fuzzy CRITIC EDAS. Scientific Reports, 15(1), 21505. https://doi.org/10.1038/s41598-025-07852-3
- Shang, Z., Yang, X., Barnes, D., & Wu, C. (2022). Supplier selection in sustainable supply chains: Using the integrated BWM, fuzzy Shannon entropy, and fuzzy MULTIMOORA methods. Expert Systems with applications, 195, 116567. https://doi.org/10.1016/j.eswa.2022.116567
- Sharma, P., Nila, B., Pamucar, D., & Roy, J. (2025). Integrating LOPCOW-DOBI method and possibilistic programming for two-stage decision making in resilient food supply chain network. Journal of Industrial Information Integration, 100847. https://doi.org/10.1016/j.jii.2025.100847
- Su, Y., Zhao, M., Wei, C., & Chen, X. (2022). PT-TODIM method for probabilistic linguistic MAGDM and application to industrial control system security supplier selection. International Journal of Fuzzy Systems, 1-14. https://doi.org/10.1007/s40815-021-01125-7
- Tatar, V., Ayvaz, B., & Pamucar, D. (2025). A quantitative ergonomic risk assessment model of maritime port operations: An integrated spherical fuzzy-FUCOM-ARTASI approach. Ocean & Coastal Management, 267, 107710. https://doi.org/10.1016/j.ocecoaman.107710
- Tirkolaee, E. B., Mardani, A., Dashtian, Z., Soltani, M., & Weber, G.-W. (2020). A novel hybrid method using fuzzy decision making and multi-objective programming for sustainable-reliable supplier selection in two-echelon supply chain design. Journal of cleaner production, 250, 119517. https://doi.org/10.1016/j.jclepro.2019.119517
- Tshidavhu, F., & Khatleli, N. (2020). An assessment of the causes of schedule and cost overruns in South African megaprojects: A case of the critical energy sector projects of Medupi and Kusile. Acta Structilia, 27(1), 119-143.
- Unal, Y., & Temur, G. T. (2021). Sustainable supplier selection by using spherical fuzzy AHP. Journal of Intelligent & Fuzzy Systems, 42(1), 593-603. https://doi.org/10.3233/JIFS-219214
- Wang, S., Chong, H.-Y., & Zhang, W. (2024). The impact of BIM-based integration management on megaproject performance in China. Alexandria Engineering Journal, 94, 34-43. https://doi.org/10.1016/j.aej.2024.03.036
- Xu, Z., Qin, J., Liu, J., & Martínez, L. (2019). Sustainable supplier selection based on AHPSort II in interval type-2 fuzzy environment. Information sciences, 483, 273-293. https://doi.org/10.1016/j.ins.2019.01.013
- Yadavalli, V. S., Darbari, J. D., Bhayana, N., Jha, P., & Agarwal, V. (2019). An integrated optimization model for selection of sustainable suppliers based on customers’ expectations. Operations Research Perspectives, 6, 100113. https://doi.org/10.1016/j.orp.2019.100113
- Yager, R. R. (2013). Pythagorean fuzzy subsets. 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS).https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
- Yalçın, G. C., Kara, K., & Senapati, T. (2024). A hybrid spherical fuzzy logarithmic decomposition of criteria importance and alternative ranking technique based on Adaptive Standardized Intervals model with application. Decision Analytics Journal, 11, 100441. https://doi.org/10.1016/j.dajour.2024.100441
- Yu, C., Shao, Y., Wang, K., & Zhang, L. (2019). A group decision making sustainable supplier selection approach using extended TOPSIS under interval-valued Pythagorean fuzzy environment. Expert Systems with applications, 121, 1-17. https://doi.org/10.1016/j.eswa.2018.12.010
- Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning—I. Information sciences, 8(3), 199-249. https://doi.org/10.1016/0020-0255(75)90017-1
- Zhao, L., Liu, Z., & Mbachu, J. (2019). Optimization of the supplier selection process in prefabrication using BIM. Buildings, 9(10), 222. https://doi.org/10.3390/buildings9100222
- Zhou, Z., & Mi, C. (2017). Social responsibility research within the context of megaproject management: Trends, gaps and opportunities. International journal of project management, 35(7), 1378-1390. https://doi.org/10.1016/j.ijproman.2017.02.017