مهدی کاظمی؛ علی اکبر نیک نفس؛ وحید رنجبر
دوره 9، شماره 22 ، مهر 1390، ، صفحه 191-208
چکیده
ماهیت روابط تشریح کننده بسیاری از فرایندهای واقعی زندگی به ویژه در حوزه های تجاری و مدیریتی اغلب غیر خطی هستند. لذا پیش بینی رفتار چنین فرایندهایی نیازمند ابزارهای دقیق و اثر بخش است. شبکه های عصبی مصنوعی قادرند به عنوان یک ابزار مهم مدل سازی در پیش بینی مسائل کسب و کار، نقایص مدل های معمول را جبران نمایند. هدف مقاله حاضر نشان دادن برتری ...
بیشتر
ماهیت روابط تشریح کننده بسیاری از فرایندهای واقعی زندگی به ویژه در حوزه های تجاری و مدیریتی اغلب غیر خطی هستند. لذا پیش بینی رفتار چنین فرایندهایی نیازمند ابزارهای دقیق و اثر بخش است. شبکه های عصبی مصنوعی قادرند به عنوان یک ابزار مهم مدل سازی در پیش بینی مسائل کسب و کار، نقایص مدل های معمول را جبران نمایند. هدف مقاله حاضر نشان دادن برتری شبکه های عصبی در پیش بینی فرایند های غیر خطی در مقایسه با سایر مدلهای پیش بینی است. بدین منظور در این مقاله داده های مربوط به صنعت چوب ایران شامل مقدار تولیدات، مقدار واردات و ارزش ارزی واردات از سال 1961 تا سال 2007 میلادی مورد مطالعه قرار گرفته است. ابتدا با استفاده از این داده ها و اعمال شبکه عصبی و مدل های غیر خطی به دست آمده از نرم افزار MATLAB، پیش بینی هایی در مورد صنعت چوب ایران انجام شد و سپس با توجه به شاخص ها میانگین مطلق درصدی خطا نتایج به دست آمده از روش های مزبور با هم مقایسه شدند. یافته های تحقیق حاکی از موفقیت چشمگیر شبکه عصبی در هر سه مطالعه صورت گرفته نسبت به مدل های غیر خطی به دست آمده از نرم افزار MATLAB می باشد.