نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، گروه مدیریت، علوم اداری و اقتصادی، دانشگاه فردوسی مشهد، مشهد، ایران

2 استاد، گروه مدیریت، علوم اداری و اقتصادی، دانشگاه فردوسی مشهد، مشهد، ایران.

3 دانشیار، گروه مدیریت، علوم اداری و اقتصادی، دانشگاه فردوسی مشهد، مشهد، ایران

4 گروه مدیریت، علوم اداری و اقتصادی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

مدیریت و عملیات انبارداری یکی از بخش‌های ضروری در سازمان‌های تولیدی و خدماتی است. انبارداری یکی از اجزای اصلی هزینه‌بر در فعالیت‌های سازمان و سزاوار توجه بیشتر محققین به این حوزه است .این تحقیق مسئله انبارش بر اساس خوشه‌بندی اقلام را با در نظر گرفتن کلیه عوامل مؤثر در ذخیره‌سازی محصولات در انباری با محصولات حجیم و متنوع بررسی نموده است. هدف اصلی این تحقیق کاهش هزینه‌های حمل‌ونقل به هنگام جمع‌آوری و تحویل سفارش‌ها و استفاده مؤثرتر از فضای انبار می‌باشد. از تکنیک تحلیل خوشه‌ای کامینز برای حل مسئله خوشه‌بندی و از مدل برنامه‌ریزی ریاضی تخصیص تعمیم‌یافته برای حل مسئله تخصیص دسته‌های اقلام به محل‌های انبارش استفاده گردیده ‌است که یک مدل برنامه‌ریزی عدد صحیح باهدف مینیمم کردن هزینه حمل‌ونقل به هنگام جمع‌آوری و تحویل سفارش‌ها است. این تحقیق با شناسایی و در نظر گرفتن شاخص‌های تأثیرگذار و با استفاده از مدل برنامه‌ریزی ریاضی تخصیص تعمیم‌یافته و فرموله کردن شرایط واقعی مسئله و حل آن بصورت بهینه توانسته است رویکردی جامع را در خوشه‌بندی و تخصیص اقلام ارائه دهد و مدیران شرکت‌ها می‌توانند از این مدل برای کاهش هزینه‌های انبار خود استفاده نمایند. نوآوری تحقیق حاضر استفاده از خوشه‌بندی در مسئله تخصیص محل‌های انبارش به اقلام انبار و سپس مدل‌سازی ریاضی آن می‌باشد. مدل پیشنهادی در شرکت خانه‌سازی مشهد اجرا شد. به‌منظور اعتبارسنجی مدل، تعدادی مسئله شبیه‌سازی‌شده از مسئله واقعی طرح و با نرم‌افزار گمز حل‌شد.

کلیدواژه‌ها

عنوان مقاله [English]

Designing a hybrid model for clustering warehouse items and allocating them to storage locations

نویسندگان [English]

  • Morteza Mohajer Bajgiran 1
  • Alireza Pooya 2
  • Zahra Naji Azimi 3
  • Somayeh fadaei 4

1 Senior Expert, Department of Management, Administrative and Economic Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

2 Professor, Department of Management, Administrative and Economic Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.

3 Associate Professor, Department of Management, Administrative and Economic Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

4 Associate Professor, Department of Management, Administrative and Economic Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

چکیده [English]

Management and warehousing operations are essential parts of manufacturing and service organizations. Warehousing is a significant component of an organization's activities, which incurs high costs and deserves more attention from researchers in this field. The aim of this research is to investigate the storage problem based on item clustering while considering all factors that affect the storage of bulky and varied products in a warehouse. The main objective of this research is to reduce transportation costs for collecting and delivering orders and to achieve more efficient use of storage space. The K-means technique is employed to solve the clustering problem, and the Generalized Allocation mathematical programming model is used to address the assignment of item categories to storage locations. This model is an integer programming model that aims to minimize transportation costs for collecting and delivering orders. This research provides a comprehensive approach to clustering and item allocation by identifying and considering effective indexes and utilizing the generalized allocation mathematical planning model to formulate and solve the problem optimally. Company managers can utilize this model to reduce their inventory costs. The innovation of this research lies in the use of clustering for the allocation of storage sites to warehouse items, followed by mathematical modeling. The proposed model was implemented at Mashhad Housebuilding Company, and several simulated problems were solved using GAMS software for validation.
Introduction
The issue of storage and warehousing is one of the main axes of industries and companies. If the warehouse is properly managed, the efficiency and productivity of the organization can be increased optimally. Warehousing is one of the main costly components in the organization's activities and deserves more attention from researchers in this field. Therefore, the main goal of this research is to reduce transportation costs during the collection and delivery of orders and more effective use of warehouse space. For this purpose, the warehouse of the Mashhad house-building factory was studied. The warehouse of the Mashhad house building factory incurs a lot of costs to collect the orders, which is the result of the improper arrangement of the warehouse. Therefore, in the current research, to achieve a suitable deployment plan and reduce storage costs, the objectives are: 1) to identify the influential criteria in the clustering of items and the model for assigning clusters to their storage location according to the studied warehouse and clustering of warehouse items, 2) to provide a model for improvement The arrangement of the group of items is followed by considering the identified criteria, parameters, and limitations.
Materials and Methods
In the present research, first, according to ABC analysis, the items are divided into three groups (A, B, and C) based on their importance in terms of storage volume and circulation. Group A items are selected for clustering, while for groups B and C, a virtual cluster is considered in the allocation problem. Influential indicators for item clustering in the warehouse were determined through content analysis. The relationship of these indicators with the problem model and their importance were identified using a questionnaire. Cummins cluster analysis was employed for item clustering. Subsequently, a generalized allocation mathematical programming model was utilized to allocate groups of items to their storage locations. This model considered limitations such as warehouse access space, interdependence between groups, demand volume, physical dimensions of items and storage locations, and crane movement during order delivery. The objective of the model was to minimize transportation costs during order collection and delivery. The problem addressed in this research is commonly known as the Warehouse Location Allocation Problem (SLAP).
Discussion and Results
In this research, 20 clusters were obtained based on 15 indicators, resulting in a total of 154 goods items. ANOVA analysis was conducted on the obtained clusters to examine the impact of each factor on warehouse arrangement. The F statistic value indicated a significant difference among all clusters and indicators The cluster analysis results revealed that the first cluster comprised various types of footings, with the "level of activity" index scoring higher than other indices. This cluster ranked second in terms of this index. The second cluster consisted of roof products, with a higher score in the "need for quick access" index compared to other indicators. Additionally, it obtained the highest scores in the indicators of quick access requirement, demand level, consumption similarity, product activity level, and average item references in the second step, the allocation problem was formulated with two dimensions: the item cluster and its storage location. The first dimension encompassed group A items, including five clusters of frequently used items and 20 clusters resulting from the clustering process, as well as groups B and C inventory items, represented by one cluster consisting of all items from these groups and virtual items. The second dimension consisted of storage locations, with the entire storage space divided into equal areas and a total of 360 storage locations considered in the model to validate the model, the problem was solved in smaller dimensions, and the warehouse manager manually arranged the clusters in the same dimensions. The objective function value was calculated in this case and compared to the value obtained from the mathematical allocation model. The results demonstrated that the researcher's mathematical model achieved over 70% improvement compared to manual arrangement. It should be noted that the actual warehouse conditions were less efficient than the manual arrangement provided by the warehouse manager, as the items had already been clustered, and the warehouse supervisor arranged the problem manually using the data from the warehouse clustering.
Conclusions
The grouping of goods, based on the results obtained from cluster analysis, ensures that items are placed together according to important criteria such as demand, access requirements, and employee safety, among others. This arrangement creates clusters of related products, forming families of goods. This approach minimizes the search time for requested products and enables timely order fulfillment in this research, the area of each cluster was determined by considering the maximum inventory of each product. Additionally, a confidence factor was applied to account for cluster area, allowing for sufficient space in case of additional inventory. This approach ensures efficient search and timely delivery of requested products. It is recommended that if a new product is introduced to the factory's product lineup, managers should conduct cluster analysis to determine its appropriate group. If the area of that category exceeds the area considered in the present research, the allocation issue should be revisited to accommodate the new addition.

کلیدواژه‌ها [English]

  • : clustering
  • storage
  • allocation generalized mathematical programming model
آذر، ع و خدیور، آ. (1393). کاربرد تحلیل آماری چندمتغیره در مدیریت. انتشارات نگاه دانش.
احمدی، ع و اکبری جوکار، م. (1392). یک مدل برنامهریزی غیرخطی بهبودیافته برای مسائل چیدمان تسهیلات با مساحتهای نابرابر. دهمین کنفرانس بین‌المللی مهندسی صنایع. تهران: دانشگاه تهران.
آخوندی، ع؛ فرقانی، ع؛ خاک‌گزار بفروئی، م. (1387). طراحی انبار (استقرار تجهیزات، کالا، وسایل حمل‌ونقل). نشر جهاد دانشگاهی، تهران، صص 213-240.
پویا، ع و کرمانشاهیان، ی. (1391). انبارش و جانمایی اقلام انبار با استفاده از فناوری گروهی و به‌کارگیری الگوریتم ابتکاری. چشمانداز مدیریت صنعتی، 109-128.
حبیب پور، ک.، صفری ر. (1390). راهنمای جامع کاربرد spss در تحقیقات پیمایشی تحلیل داده‌های کمی؛ چاپ چهارم انتشارات لویه (متفکران).
خلیلی، س و لطفی، م. (1392). تعیین ظرفیت بهینه انبار با تحلیل هزینههای ساخت انبار به کمک مدلهای صف. دهمین کنفرانس بین‌المللی مهندسی صنایع. تهران: دانشگاه تهران.
دانشور کاخکی، م؛ نصیری خونساری، م؛ مظفری، د و نجاتی و. (1385). الگوی مناسب چیدمان اقلام در یک انبار کانبان، مطالعه موردی شرکت ایران‌خودرو. دومین کنفرانس لجستیک و زنجیره تأمین.
عبداللهی، پ و حسینی‌نسب، ح. (1392). انتخاب بهترین چیدمان تسهیلات با استفاده از روش تلفیقی GRA، NLP. دهمین کنفرانس بین‌المللی مهندسی صنایع. تهران: دانشگاه تهران.
کاظمی، م و بذرافشان، س. (1392). حل مسئله چیدمان تسهیلات با مساحتهای نابرابر با استفاده از الگوریتم ژنتیک. دهمین کنفرانس بین‌المللی مهندسی صنایع. تهران: دانشگاه تهران.
کلانتری، خلیل. (1390). پردازش و تحلیل داده‌ها در تحقیقات اجتماعی و اقتصادی با استفاده از نرم‌افزار SPSS. تهران: انتشارات دانشگاه تهران.
نایبی، ع.ح؛ اخوان ماسوله، س؛ شریفی، م. (1387). کاربرد روش تحلیل سلسله مراتبی در انتخاب الگوی مناسب چیدمان اقلام در انبار مطالعه موردی در انبار 016 شرکت ایران‌خودرو، ششمین کنفرانس بین‌المللی مهندسی صنایع، تهران، انجمن مهندسی صنایع ایران، دانشگاه صنعتی شریف.
Amirhosseini, M.M. and Sharp, G.P. (1996), Simultaneous analysis of products and orders in storage assignment, Manufacturing Science and Engineering ASME 1996 MED-Vol. 4, 803-811.
Arnaout, J. P. (2018). Worm optimization for the multiple level warehouse layout problem. Annals of Operations Research, 269(1-2), 29-51.‌
Anđelković, A., & Radosavljević, M. (2018). Improving order-picking process through implementation of warehouse management system. Strategic Management, 23(1), 3-10.‌
Bottani, E. Cecconi, M. Vignali, G. & Roberto, M. (2012). Optimisation of storage allocation in order picking operations through a genetic algorithm. Journal of Logistics Research and Applications, 127-146.
Chuang, Y.F. Lee, H.T. & Lai, Y.C. (2012). Item-Associated Cluster Assignment Model on Storage Allocation Problems. Computers & industrial engineering, 63(4), 1171-1177.
De Santis, R., Montanari, R., Vignali, G., & Bottani, E. (2018). An adapted ant colony optimization algorithm for the minimization of the travel distance of pickers in manual warehouses. European Journal of Operational Research, 267(1), 120-137.‌
Frazelle, E. (1990). Stock location assignment and order picking productivity. (Ph.D. Dissertation). Georgia institute of technology.
Farahani, R. Z., Steadieseifi, M., Asgari, N. (2010). Multiple criteria facility location problems: A survey. Journal of Applied Mathematical Modeling, No. 34, pp. 1689-1709.
Gu, J. Goetschalckx, M. & McGinnis, L. (2007). Research on warehouse operations: a comprehensive review. Eur.J.Oper.Res, 1-21.
Garfinkel, Maurice, (2005), “Minimizing Multi-zone Orders in the Correlated Storage Assignment Problem”, A Dissertation for the PhD degree, School of Industrial and Systems Engineering Georgia Institute of Technology.
Hun, S. (2003). Algorithms For Dynamic Forward Area Allocation In A Warehouse. Sabanc University.
Heragu, S. Du, L. Mantel, R. & Schuur, P. (2005). Mathematical model for warehouse design and product allocation. International Journal of Production Research, 327-338.
Hua, W. (2001). Cluster based storage policies in kitting area. (Ph.D. Dissertation). Georgia institute of technology.
Jane, C. C., & Laih, Y. W. (2005). A clustering algorithm for item assignment in a synchronized zone order picking system. European Journal of Operational Research, 166(2), 489-496.
Juraitis, Mykolas. Stonys, Tomas. Strinskas, Arunas. Jankauskas, Darius and Rubliauskas, Dalius. (2006). a randomized heuristic for the container loading problem: further investigation. Information Technology and Control, Vol. 35, No: 1.
Jinxiang Gu, Marc Goetschalckx, Leon F. McGinnis. (2007). Research on warehouse operation: A comprehensive review. European Journal of Operational Research, No. 177, pp. 1˚21.
Kim, S. (2009). Dynamic Slotting and Cartonization Problem in Zone-based Carton Picking Systems. (A Dissertation for the PhD degree). Auburn University.
Küçükdeniz, T., Baray, A., Ecerkale, K., & Esnaf, Ş. (2012). Integrated use of fuzzy c-means and convex programming for capacitated multi-facility location problem. Expert Systems with Applications, 39(4), 4306-4314.
Kuo, R. J., Kuo, P. H., Chen, Y. R., & Zulvia, F. E. (2016). Application of metaheuristics-based clustering algorithm to item assignment in a synchronized zone order picking system. Applied Soft Computing, 46, 143-150.
Larson, T. March, h. & Kusiak, A. (1997). A heuristic approach to warehouse layout with class-based storage. IIE Transactions
Liu, C. (1999). Clustering techniques for stock location and order-picking in a distribution center. Computers & operations research, 989-1002.
Manzini R. Bindi, F. Ferrari E, Pareschi A. (2010), “Correlated Storage Assignment and Isotime Mapping for Profiling Sku”, XVI International Working Seminar on production Economics, Innsbruck (Austria), PRE-PRINTS, Volume 4, pp 27-41.
Naik, V. C. (2004). Fuzzy C-means clustering approach to design a warehouse layout.
Onut, S. Tuzkaya, U. & Dogac, B. (2008). A Particle swarm optimization for the multiple- level warehouse layout design problem. Computer and Industrial engineering, 54(4), 783-799.
Park, C. & Junyong, S. (2010). Comparing heuristic algorithms of the planar storage location assignment problem. Transportation Research Part E, 171-185.
Pisinger, David. (1998). A tree search heuristic for the container loading problem. Ricerca operativa, No: 28.
Pang, K. W., & Chan, H. L. (2017). Data mining-based algorithm for storage location assignment in a randomised warehouse. International Journal of Production Research, 55(14), 4035-4052.
Rouwenhorst, B. Reuter, B. Stockrahm, V. van Houtum, G. Mantel, R. & Zijm, W. (2000). Warehouse design and control: Framework and literature review. European Journal of Operational Research, 122(3), 515-533.
Rosenwein, M. B. (1994), “An application of cluster-analysis to the problem of locating items within a warehouse”, IIE transactions. 26, pp 101-103.
Sadiq, M. (1993). A hybrid clustering algorithm for reconfiguration of dynamic order picking systems. (PhD Dissertation). University of Arkansas.
Shah, P. (1988), “Decision problems in mini-load automatic warehousing systems”, Ph.D. Dissertation, Purdue University.
Sharma, S., & Shah, B. (2015). A proposed hybrid storage assignment framework: a case study. International Journal of Productivity and Performance Management, 64(6), 870-892.
Sharma, A., Sharma, A & Jalal, A. (2017). Clustering based hybrid approach for facility location problem.Management Science Letters, 7(12), 577-584.
Van den Berg, J. & Zijm, W. (1999). Models for waehouse management: classification and examples. Int.J.production Economics, 519-528.
Vrysagotis, V. & Kontis, P. (2011). Warehouse layout problems: Types of problems and solution algorithms. Journal of Computations & Modelling, 131-152.
Xiao, J. & Zheng, L. (2010). A Correlated storage assignment to minimize zone visits for BOM picking. International journal of advanced manufacturing technology.
YANG, L. & FENG, Y. (2006). Fuzzy Multi-Level Warehouse Layout Problem: New Model and Algorithm. J Syst Sci Syst Eng, 493-503.
Yan, B., Yan, C., Long, F., & Tan, X. C. (2018). Multi-objective optimization of electronic product goods location assignment in stereoscopic warehouse based on adaptive genetic algorithm. Journal of Intelligent Manufacturing, 29(6), 1273-1285.https://doi.org/10.1007/s10845-015-1177-7.
Yang, C. L., & Nguyen, T. P. Q. (2016). Constrained clustering method for class-based storage location assignment in warehouse. Industrial Management & Data Systems, 116(4), 667-689.
Zhang, G. & Lai, K. (2009). Tabu search approaches for the multi-level warehouse layout problem with adjacency constraints. Engineering Optimization, 775-790.
Azar, A. and Khadivar, A. (2013). The application of multivariate statistical analysis in management. Negah Danesh Publications. [In Persian]
Ahmadi, A. and Akbari Jokar, M. (2012). An improved nonlinear programming model for facility layout problems with unequal areas. 10th International Industrial Engineering Conference. Tehran: University of Tehran. [In Persian]
Akhundi, A; Farghani, A; Khaqazar Bafroi, M. (1387). Warehouse design (installation of equipment, goods, means of transportation). Jihad University Press, Tehran, pp. 213-240. [In Persian]
Pooya, A., & Kermanshahian, Y. (2012). Using the Group Technology and a Heuristic Algorithm for Storage Location Assignment Problem. Journal of Industrial Management Perspective, 2(Issue 2, Summer 2012), 109-128. [In Persian]
Habibpour, K., Safari R. (1390). A comprehensive guide to the use of spss in quantitative data analysis survey research; The fourth edition of Loya Publications. [In Persian]
Khalili, S. and Lotfi, M. (2012). Determining the optimal warehouse capacity by analyzing warehouse construction costs with the help of queue models. 10th International Industrial Engineering Conference. Tehran: University of Tehran. [In Persian]
Daneshwar Kakhki, M.; Nasiri Khoonsari, M.; Mozafari, D. and Nejati,V. (1385). The appropriate pattern of arranging items in a Kanban warehouse, a case study of Iran Khodro Company. The second logistics and supply chain conference. [In Persian]
Abdullahi, P. and Hosseininsab, H. (2012). Choosing the best arrangement of facilities using the combined method of GRA, NLP. 10th International Industrial Engineering Conference. Tehran: University of Tehran. [In Persian]
Kazemi, M. and Bazarafshan, S. (2012). Solving the problem of arranging facilities with unequal areas using genetic algorithm. 10th International Industrial Engineering Conference. Tehran: University of Tehran. [In Persian]
Kalantari, K. (1390). Data processing and analysis in socio -economic research.Tehran: Tehran University Press. [In Persian]
Naibi, A.H.; Akhwan Masuleh, S; Sharifi, M. (1387). Application of Hierarchical Analysis Method in Choosing the Appropriate Pattern of Arrangement of Items in the Warehouse Case Study in Iran Khodro Company 16 Warehouse, 6th International Industrial Engineering Conference, Tehran, Iran Industrial Engineering Association, Sharif University of Technology. [In Persian]