نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری رشته ریاضی کاربردی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

2 استاد، گروه ریاضی کاربردی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

3 استاد،گروه ریاضی، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران

4 استادیار، گروه مدیریت، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

چکیده

اگر قیمت‌ های خروجی‌ های واحد های تحت ارزیابی مشخص باشد ، ارزیابی کارایی درآمد واحد ها یکی از مهم‌ ترین ارزیابی‌ هایی است که می‌ تواند اطلاعات ارزشمندی را در مورد واحدها ارائه دهد . در این مقاله، ابتدا تعریف جدیدی از اندازه مقیاس بهینه ، براساس بیشینه‌ سازی اندازه متوسط کارایی درآمد ارائه می‌ شود و سپس اندازه متوسط کارایی درآمد در دو فضای محدب و نامحدب تعریف می‌ شود که این اندازه، مستقل از بازده به مقیاس و فرض یکسان بودن بردار قیمت‌ های ورودی و خروجی واحد ها است . در ادامه ، اندازه متوسط کارایی درآمد برای ارزیابی واحد هایی با ورودی‌ ها و خروجی‌ های تصادفی به کار گرفته‌ شده و مدل‌ هایی جهت محاسبه آن در فضای تصادفی ارائه می‌ شود. در پایان نیز، روش پیشنهادی، در یک مثال تجربی برای محاسبه اندازه متوسط کارایی درآمد مجموعه‌ای از مناطق پستی ایران مو رد استفاده قرار می‌گیرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Average revenue efficiency and optimal scale sizes in stochastic data envelopment analysis: A case study of post offices

نویسندگان [English]

  • Leila Parhizkar Miyandehi 1
  • Alireza Amirteimoori 2
  • Sohrab Kordrostami 3
  • Mansour Soufi 4

1 PhD student in Applied Mathematics, Rasht Branch, Islamic Azad University, Rasht, Iran

2 Professor, Department of Applied Mathematics, Rasht Branch, Islamic Azad University, Rasht,Iran

3 Professor, Department of Mathematics, Lahijan Branch, Islamic Azad University, Lahijan, Iran

4 Assistant Professor, Department of Management, Rasht Branch, Islamic Azad University, Rasht, Iran

چکیده [English]

Estimating the revenue efficiency of entities being evaluated is crucial as it provides valuable information about organizations, assuming that the output prices are known. This research introduces a new definition of optimal scale size (OSS) based on maximizing the average revenue efficiency (ARE). Additionally, the ARE is defined for both convex and non-convex sets, independent of returns to scale and the assumption that the vector of input-output prices of units is uniform. Moreover, to address the presence of uncertain data in real-world applications, the introduced ARE model is extended to evaluate systems with random inputs and outputs, along with approaches for its calculation. Finally, the proposed method is applied in an experimental example, calculating the ARE for a dataset of postal areas in Iran.
Introduction
The concept of optimal scale size has been extensively studied in the field of data envelopment analysis. Cesaroni and Giovannola's research on non-convex FDH technology reveals that the optimal scale size is a point in the production possibility set that minimizes average cost efficiency. Average cost efficiency, a new measure combining scale and allocation efficiencies, provides a more accurate performance assessment compared to cost and scale efficiencies. When evaluating units with known output prices instead of input prices, assessing revenue efficiency can offer more valuable insights. This paper extends the research on cost evaluation to revenue evaluation. It introduces the concepts of average revenue efficiency and optimal scale size based on revenue maximization. The optimal scale size based on revenue maximization is defined as the point in the production possibility set that maximizes the average radial income for the unit under investigation. Average revenue efficiency serves as an evaluation measure of unit revenue, surpassing revenue and scale efficiencies in accuracy. The paper examines methods for calculating average revenue efficiency in both convex and non-convex technologies. It demonstrates that the average revenue efficiency model in convex technology with variable returns to scale is equivalent to the revenue model with constant returns to scale. Furthermore, the relationship between optimal scale size points based on revenue maximization and the most productive scale size is determined. Next, the paper presents the average revenue efficiency model for stochastic sets with the presence of stochastic data. An experimental example is used to calculate the average revenue efficiency and obtain the optimal scale size for a set of postal areas in Iran.
Materials and Methods
The study builds upon Cesaroni and Giovannola's method for calculating average cost efficiency and optimal scale size to develop models for average revenue efficiency and optimal scale size based on revenue. It also utilizes chance-constrained probabilistic models with a deterministic objective function in DEA literature to present average revenue efficiency for stochastic sets. The model is transformed from stochastic to deterministic and then converted into a linear model using the error structure method.
Discussion and Results
This paper introduces average revenue efficiency and optimal revenue scale size, demonstrating the equivalence between the average revenue efficiency models in convex technology with variable returns to scale and those with constant returns to scale. It also presents the average revenue efficiency model for stochastic sets, enabling the calculation of average revenue efficiency and optimal revenue scale size for units with random inputs and outputs.
Conclusion
In many real-world scenarios, particularly when output prices are known, evaluating revenue efficiency holds greater significance than cost efficiency. This study develops the concepts of average cost efficiency and optimal scale size for revenue evaluation, expanding upon the existing literature on data envelopment analysis. The paper demonstrates how average revenue efficiency can be calculated as a valuable and accurate measure of efficiency in convex and non-convex technologies, without making assumptions about returns to scale. By assuming the randomness of input and output variables and employing chance-constrained models, a quadratic deterministic model is presented to calculate average revenue efficiency. It is then transformed into a linear model assuming uncorrelated variables, enabling the determination of average revenue efficiency and optimal scale size based on revenue maximization for random units. The proposed models are applied to a real-world sample, evaluating the average revenue efficiency of twelve postal units. The results highlight the models' ability to provide a more accurate evaluation of revenue efficiency and identify the best revenue scale size as the reference for inefficient units.

کلیدواژه‌ها [English]

  • Optimal Scale Size
  • Efficiency
  • Average Revenue Efficiency
  • Stochastic Data Envelopment Analysis
 Aigner, D., Lovell, C. K., & Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. Journal of econometrics6(1), 21-37.
Assani, S., Jiang, J., Assani, A., & Yang, F. (2019). Estimating and decomposing most productive scale size in parallel DEA networks with shared inputs: A case of China's Five-Year Plans. arXiv preprint arXiv:1910.03421.
Banker, R. D., & Thrall, R. M. (1992). Estimation of returns to scale using data envelopment analysis. European Journal of operational research62(1), 74-84.
Baumol, W. J., Panzar, J. C., & Willig, R. D. (1983). Contestable markets: An uprising in the theory of industry structure: Reply. The American Economic Review73(3), 491-496.
Bhatia, A., & Mahendru, M. (2018). Assessment of Revenue Efficiency and Return to Scale of Indian Scheduled Commercial Banks. Assessment8(4).
Cesaroni, G., & Giovannola, D. (2015). Average-cost efficiency and optimal scale sizes in non-parametric analysis. European Journal of Operational Research242(1), 121-133.
Charnes, A., & Cooper, W. W. (1963). Deterministic equivalents for optimizing and satisficing under chance constraints. Operations research11(1), 18-39.
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research2(6), 429-444
Cooper, W. W., Huang, Z., Lelas, V., Li, S. X., & Olesen, O. B. (1998). Chance constrained programming formulations for stochastic characterizations of efficiency and dominance in DEA. Journal of productivity analysis9(1), 53-79.
Färe, R., & Grosskopf, S. (1985). A nonparametric cost approach to scale efficiency. The Scandinavian Journal of Economics, 594-604.
Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society: Series A (General)120(3), 253-281.
Førsund, F. R., & Hjalmarsson, L. (2004). Are all scales optimal in DEA? Theory and empirical evidence. Journal of Productivity Analysis21(1), 25-48.
Frisch, R. (1965). Theory of production. Theory of production.
Gong, B. H., & Sickles, R. C. (1992). Finite sample evidence on the performance of stochastic frontiers and data envelopment analysis using panel data. Journal of Econometrics51(1-2), 259-284.
Haghighatpisheh, H., Kordrostami, S., Amirteimoori, A., & Lotfi, F. H. (2019). Optimal scale sizes in input–output allocative data envelopment analysis models. Annals of Operations Research, 1-22.
Huang, Z., & Li, S. X. (2001). Stochastic DEA models with different types of input-output disturbances. Journal of Productivity Analysis15(2), 95-113.
Jahani Sayyad Noveiri, M., Kordrostami, S., & Amirteimoori, A. (2021). Sustainability Assessment and Most Productive Scale Size: a Stochastic DEA Approach with Dual Frontiers. Environmental Modeling & Assessment, 26(5), 723-735.
Kao, C., & Liu, S. T. (2019). Stochastic efficiency measures for production units with correlated data. European Journal of Operational Research, 273(1), 278-287.
Khanjani Shiraz, R. K., Hatami-Marbini, A., Emrouznejad, A., & Fukuyama, H. (2020). Chance-constrained cost efficiency in data envelopment analysis model with random inputs and outputs. Operational Research, 20(3), 1863-1898.
Land, K. C., Lovell, C. K., & Thore, S. (1993). Chance‐constrained data envelopment analysis. Managerial and decision economics14(6), 541-554.
Liu, W., Wang, Y. M., & Lyu, S. (2017). The upper and lower bound evaluation based on the quantile efficiency in stochastic data envelopment analysis. Expert Systems with Applications, 85, 14-24.
Mehdizadeh, S., Amirteimoori, A., Charles, V., Behzadi, M. H., & Kordrostami, S. (2021). Measuring the efficiency of two-stage network processes: A satisficing DEA approach. Journal of the Operational Research Society72(2), 354-366.
Mitropoulos, P., Zervopoulos, P. D., & Mitropoulos, I. (2020). Measuring performance in the presence of noisy data with targeted desirable levels: evidence from healthcare units. Annals of Operations Research, 294(1), 537-566.
Piri, M., Lotfi, F. H., Rostamy-Malkhalifeh, M., & Behzadi, M. H. (2018). Evaluating decision making units with stochastic data by the multiplier model in DEA. Advances and Applications in Mathematical Sciences, 17(5), 385-400.
Podinovski, V. (2004). Efficiency and global scale characteristics on the “No free lunch” assumption only. Journal of Productivity Analysis22(3), 227-257.
Puri, J., & Yadav, S. P. (2016). A fully fuzzy DEA approach for cost and revenue efficiency measurements in the presence of undesirable outputs and its application to the banking sector in India. International Journal of Fuzzy Systems, 18(2), 212-226.
Ruggiero, J. (2004). Data envelopment analysis with stochastic data. Journal of the Operational Research Society55(9), 1008-1012.
Sahoo, B. K., Mehdiloozad, M., & Tone, K. (2014). Cost, revenue and profit efficiency measurement in DEA: A directional distance function approach. European Journal of Operational Research237(3), 921-931.
Sueyoshi, T. (1999). DEA duality on returns to scale (RTS) in production and cost analyses: an occurrence of multiple solutions and differences between production-based and cost-based RTS estimates. Management Science45(11), 1593-1608.