نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد مهندسی صنایع، دانشگاه خوارزمی، تهران، ایران

2 استادیار، پژوهشگاه ارتباطات و فناوری اطلاعات، تهران، ایران

3 استادیار اقتصاد، دانشگاه خوارزمی، تهران، ایران

چکیده

امروزه با توجه به آلودگی های زیست محیطی که محصولات مختلف ایجاد می کنند، اتخاذ سیاست-هایی از سوی دولتها در زمینه بهبود عملکرد زیست محیطی زنجیره تامین بیشتر مورد توجه قرار گرفته است. زنجیره تامین سبز منافع زیادی را مانند صرفه جویی در منابع انرژی، کاهش آلاینده‌ها و... در پی خواهد داشت. مداخله‌ی دولت برای توسعه این زنجیره ها به صورتهای مختلفی مانند پرداخت یارانه، اخذ مالیات، فروش مجوز و انجام تبلیغات است. در این پژوهش، دو تولیدکننده با زنجیره های تامین سبز و غیرسبز در بازار رقابتی با یکدیگر رقابت کرده و محصولات خود را از طریق یک خرده فروش مشترک به فروش می‌رسانند و دولت نیز به عنوان رهبر در بازی استاکلبرگ مداخله می‌کند. این زنجیره ها بر اساس انتخاب روش های قیمت‌گذاری عامل محور و عمده فروشی به چهار مدل مختلف طراحی شده است و دراین مدل ها دولت با انجام تبلیغات برای محصولات سبز در دو مدل اول و دوم و با اخذ مالیات از تولیدکننده محصول غیرسبز در مدل های سوم و چهارم درصدد حداکثر کردن رفاه اجتماعی و بهبود محیط زیست است. به منظور تجزیه و تحلیل و مقایسه مدلها از روش نظریه بازیها استفاده شد. نتایج نشان می دهد که به طور کلی دخالت دولت باعث بهبود وضعیت زیست محیطی و رفاه اجتماعی می شود و در حالت انجام تبلیغات، تأثیر بهتری بر روند کلی بازار و همچنین بر رفاه اجتماعی نسبت به استراتژی اخذ مالیات دارد.

کلیدواژه‌ها

عنوان مقاله [English]

Designing a Model for Examining Impact of Government Intervention on the Competition between Green and Non-green Agency Supply Chains

نویسندگان [English]

  • Mohammadtaghi Moharrami 1
  • Mohammad Kazem Sayadi 2
  • Meysam Rafei 3

1 Master of Industrial Engineering, Khwarazmi University, Tehran, Iran

2 Assistant Professor, ICT Research Institute, Tehran, Iran

3 Assistant Professor, Department of Economics, Kharazmi University, Tehran, Iran.

چکیده [English]

Nowadays, due to the pollution that businesses and various industries impose to the environment, the adoption of strategies and policies by governments to improve the environmental performance of the supply chain has received more attention. The green supply chain will have many benefits, such as saving energy resources, reducing pollutants, and so on. Government intervention to develop these chains takes various forms, such as subsidies, taxes, licensing, and advertising. In this study, two manufacturers with green and non-green supply chains compete in a competitive market and sell their products through a joint retailer, and the government intervenes as a leader in the Stackelberg game. These chains are designed based on the selection of agent-based pricing and wholesale pricing methods in four different models. In these models, the government advertises for green products in the first and second models and imposes taxes on the producer of non-green products in the third and fourth models, seeking to maximize social welfare and improving the environment. In order to analyze and compare the models, the game theory approach was used. The results show that in general, government intervention improves the environmental situation and social welfare, and in the case of advertising has a better effect on the overall market trend and also on social welfare than the tax imposing strategy.
Introduction
Today, with the rapid growth of industries worldwide, the environmental impact and ecological effects of products have become significant concerns. There is a growing awareness of the environmental consequences and associated risks to human health resulting from industrial activities. Consequently, research on green supply chain management has seen a significant increase. As public awareness about environmental issues continues to rise and concerns about the future of our planet intensify, customers are increasingly inclined to purchase environmentally friendly products. This shift in consumer behavior has prompted manufacturers and businesses to reassess their production processes and adapt to changing customer preferences and new government policies. The primary objective of this research is to investigate the role of government intervention in influencing the demand for green and non-green products through factor-oriented green and non-green supply chains. Additionally, the study aims to identify government policies that can facilitate the development and adoption of green products. The findings of this research can be utilized by governments to promote the use of environmentally friendly goods and enhance environmental protection efforts.
Materials and methods
The approach of this research involves modeling and analysis. The research considers multiple models, each consisting of two supply chains with two manufacturers and a common retailer. One manufacturer produces a green product (environmentally friendly), while the other produces a non-green product (not environmentally friendly). Throughout the research, all comparative models adhere to this structure, with the first supply chain focusing on the production of green products and the second supply chain delivering non-green products to customers. All the analyses conducted in this research are mathematically analyzed and utilize game theory to validate the model results and analyze them. Since the model results are mathematically proven, there is no need to collect real-world data. Instead, hypothetical data are used in the examples to illustrate the various aspects of the problem. In this research, all the models are designed based on the Stackelberg game, and the government takes the initiative in determining its objectives.
Results
In order to compare the models and analyze the results, we first considered a fixed strategy (advertisement or taxation) for the government. This allowed us to investigate the effect of pricing type on profit, demand, and social welfare. We compared the first model with the second model and also compared the third and fourth models together. Furthermore, we compared the advertising strategy models with the taxation strategy models, examining each strategy within the supply chains. The results indicate that the second model generates the highest level of social welfare and benefits for society, while also resulting in the greatest profit for producers and retailers. Following that, the first model exhibits more social welfare compared to the third and fourth models. Additionally, the profit of the green product producer in the first model significantly surpasses that of the non-green product producer. This difference in profitability serves as an incentive for producers to transition to green product production. Although the profit disparity between producers in the third and fourth models is more substantial and encourages the greater promotion of green product production, it leads to lower satisfaction and well-being.
Conclusions
The results demonstrate the high sensitivity of producers' and retailers' profits to the pricing of their products. The product price is influenced by factors such as whether the supply chain is factor-oriented or wholesale, as well as the type of government intervention. When consumers make purchasing decisions, they consider not only the price but also other parameters, such as the environmental friendliness of the product. In other words, the choice of a product is determined by a set of conditions and is not solely dependent on price fluctuations. The pricing method, whether factor-oriented or wholesale, significantly impacts the profitability of supply chain members and has implications for social welfare and environmental improvement. Different types of government intervention, such as cultural initiatives or taxation, can also lead to changes in the results

کلیدواژه‌ها [English]

  • Green supply chain
  • Non-Green Supply Chain
  • Government intervention
  • Social welfare
  • Agent-Based Pricing
  1. آذر، عادل.، خسروانی، فرزانه؛ و جلالی، رضا. (1392). تحقیق در عملیات نرم: رویکردهای ساختاردهی به مسئله، تهران: سازمان مدیریت صنعتی.
  2. اسماعیل پور، رضا.، آذر، عادل؛ و شاه‌محمدی، محمد. (1396). ارائه مدل ساختاری تفسیری از شاخص‌های انتخاب تأمین‌کننده مبتنی بر مسئولیت اجتماعی شرکت، مطالعات مدیریت صنعتی، شماره 15(47)، ص 45-70.
  3. عبدلی مسینان، فائزه؛ و تقوی فرد، محمدتقی. (1399). تأثیر ویژگی‌های شبکه اجتماعی سازمانی بر عملکرد شغلی با نقش میانجی‌گری فعالیت‌های تسهیم دانش، مطالعات مدیریت صنعتی، شماره 18(57)، ص 175-212.
  4. علی محمدی اصل، ابراهیم.، بافنده زنده، علیرضا؛ و تقی زاده، هوشنگ. (1399). تدوین استراتژی‌های دانشگاه آزاد اسلامی تبریز با استفاده از رویکرد پویایی‌شناسی سیستم، مطالعات مدیریت صنعتی، شماره 18(58)، ص 247-278.
  5. Basahel, S., & Córdoba-Pachón, J.-R. (2021). An enhanced use of Soft Systems Methodology (SSM) in Mode 2 to explore online distance education in Saudi Arabia. Journal of the Operational Research Society, 1-14.
  6. Checkland, P. (1999). Soft Systems Methodology: A 30-year Retrospective. Systems Thinking. Systems practice, A1-A66.
  7. Checkland, P., & Holwell, S. (1998). Action research: its nature and validity. Systemic Practice and Action Research, 11(1), 9-21.
  8. Checkland, P., & Poulter, J. (2006). Learning for action: a short definitive account of soft systems methodology and its use for practitioner, teachers, and students. (Vol. 26): Wiley Chichester.
  9. Checkland, P., & Scholes, J. (2000). Soft systems methodology in action: Including a 30-year retrospective. Journal of the Operational Research Society, 51(5), 648-648.
  10. Checkland, P., & Winter, M. (2006). Process and content: two ways of using SSM. Journal of the Operational Research Society, 57(12), 1435-1441.
  11. Costello, P. (2003). "Action research": A&C Black.
  12. Hanafizadeh, P., & Mehrabioun, M. (2017). Application of SSM in tackling problematical situations from academicians’ viewpoints. Systemic Practice and Action Research, 1-42.
  13. Hanafizadeh, P., Mehrabioun, M., & Mostasharirad, A. (2020). The Necessary and Sufficient Conditions for the Solution of Soft Systems Methodology. Philosophy of Management, 1-32.
  14. Hanafizadeh, P., & Zadeh, R. V. (2015). "Vendor selection using soft thinking approach: A case study of national Iranian south oil company". Systemic Practice and Action Research, 28(4), 355-381.
  15. Holm, L. B., Bjornenak, T., Kjaeserud, G. G., & Noddeland, H. (2017). "Using discrete event simulation and soft systems methodology for optimizing patient flow and resource utilization at the surgical unit of radiumhospitalet in Oslo, NORWAY". Paper presented at the Simulation Conference (WSC), 2017 Winter.
  16. Howick, S., & Ackermann, F. (2011). Mixing OR methods in practice: Past, present and future directions. European Journal of Operational Research, 215(3), 503-511.
  17. Jackson, M. C. (2003). Systems thinking: Creative holism for managers: Wiley Chichester.
  18. Kotiadis, K., & Tako, A. A. (2018). Facilitated post-model coding in discrete event simulation (DES): A case study in healthcare. European Journal of Operational Research, 266(3), 1120-1133.
  19. Lehaney, B., & Taylor, S. (1997). Soft modelling approaches to simulation model specification. INF, 21(4), 607-612.
  20. Mingers, J. (2006). Realising systems thinking: knowledge and action in management science: Springer Science & Business Media.
  21. Mingers, J., & Rosenhead, J. (2004). Problem structuring methods in action. European Journal of Operational Research, 152(3), 530-554.
  22. Mingers, J., & Taylor, S. (1992). The use of soft systems methodology in practice. Journal of the Operational Research Society, 43(4), 321-332.
  23. Munro, I., & Mingers, J. (2002). The use of multimethodology in practice—results of a survey of practitioners. Journal of the Operational Research Society, 53(4), 369-378.
  24. Novani, S., & Mayangsari, L. (2017). Soft Systems Agent-Based Methodology: Multi-methods Approach Between Soft Systems Methodology and Agent-Based Modeling Agent-Based Approaches in Economics and Social Complex Systems IX (pp. 165-176): Springer.
  25. Rosenhead, J., & Mingers, J. (2001). Rational analysis for a problematic world revisited: Problem structuring methods for complexity, uncertainty and conflict: Wiley Chichester.
  26. Sankaran, S., Rowe, W., & Cady, P. (2017). Developmental progress in conducting action research. Systems Research and Behavioral Science, 34(5), 609-617.
  27. Scholes, J., & Checkland, P. (1990). Soft systems methodology in action. Chichester, Wiley, 876, 910.
  28. Smyth, D. S., & Checkland, P. B. (1976). Using a systems approach: the structure of root definitions. Journal of applied systems analysis, 5(1), 75-83.
  29. Williams, T. (2009). Management Science in Practice:
  30. Wilson, B. (1984). Systems: concepts, methodologies, and applications: John Wiley & Sons, Inc.
  31. Winter, M. (2006). Problem structuring in project management: an application of soft systems methodology (SSM). Journal of the Operational Research Society, 57(7), 802-812.
  32. Winter, M., & Checkland, P. (2003). Soft systems: a fresh perspective for project management. Paper presented at the Proceedings of the Institution of Civil Engineers-Civil Engineering.