نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری رشته مهندسی صنایع، دانشگاه خوارزمی، تهران، ایران

2 استادیار گروه مهندسی صنایع، دانشگاه خوارزمی، تهران، ایران

3 دانشیار گروه مهندسی صنایع، دانشگاه خوارزمی، تهران، ایران

10.22054/jims.2022.67909.2789

چکیده

در مدیریت شبکه زنجیره تامین خون وجود یک برنامه منسجم و دقیق می تواند به افزایش کارآیی و اثر بخشی شبکه کمک شایانی ‌نماید. در این پژوهش مدل ریاضی یکپارچه در شرایط بحران به منظور کمینه نمودن هزینه ها و زمان تحویل خون ارائه شده است. در مدل حاضر برای اطمینان از تامین خون به موقع و به اندازه به خصوص در شرایط بحران از رویکرد جدید همچون تمرکز سطوح جمع آوری، فرآوری و توزیع خون در تسهیلات، در نظر گرفتن حمل و نقل اضطراری، ترافیک مسیر(تاخیر درتحویل)، جایگزینی گروه های خونی و تسهیلات پشتیبان بهره گرفته شد. تصمیمات مهم دیگری اعم از مکان یابی کلیه تسهیلات دائم و موقت در سه سطح جمع آوری، فرآوری و توزیع وکمبود خون نیز در مدل اعمال شد. مدل را با استفاده از روش اپسیلون محدودیت تکامل یافته برای مسائل مختلف حل شد. نتایج حاصل از محاسبات نشان داد استقرار تجهیزات فرآوری پیشرفته در بیمارستان های صحرایی، تمرکز سطوح در تسهیلات، جایگزینی گروه های خونی سبب بهبود قابل توجه شبکه شده است لذا مدیران و تصمیم گیرندگان می توانند از این رویکردها برای بهینه سازی شبکه زنجیره تامین خون به منظور به کاهش هزینه ها و زمان تحویل خون استفاده نمایند.

کلیدواژه‌ها

عنوان مقاله [English]

Developing an integrated blood supply chain network in crisis conditions considering the concentration of sites in facilities and blood types substitution

نویسندگان [English]

  • Mohsen Jami 1
  • Hamidreza Izadbakhsh 2
  • Alireza Arshadi Khamseh 3

1 Ph.D. Candidate in Industrial Engineering, kharazmi University, Tehran, Iran.

2 Assistant Professor, Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran

3 Associate Professor, Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran

چکیده [English]

In the management of the blood supply chain network, the existence of a coherent and accurate program can help increase the efficiency and effectiveness of the network. This research presents an integrated mathematical model to minimize network costs and blood delivery time in crisis conditions. In the present model, to ensure timely and sufficient blood supply, especially in crisis conditions, the new approach concentration of blood collection, processing, and distribution sites in the facilities, emergency transportation, pollution, route traffic (delivery delay), blood type substitution, and supporter facilities were used. Moreover, other important decisions, including locating all permanent and temporary facilities at three blood collection, processing, and distribution sites, and blood shortage, were also applied in the model. The proposed model was solved for several problems using the Augmented epsilon-constraint method. The results showed that deploying advanced processing equipment in field hospitals, the concentration of sites in facilities, and blood type substitution have significantly improved network efficiency. Therefore, managers and decision-makers can use the proposed approaches to optimize the blood supply chain network to minimize network costs and blood delivery time.

کلیدواژه‌ها [English]

  • Blood supply chain
  • Integration
  • Location
  • Concentration of sites in facilities
  • Blood types substitution
 
Abbasi, B., Vakili, G., & Chesneau, S. (2017). Impacts of reducing the shelf life of red blood cells: A view from down under. Interfaces, 47(4), 336-351.
Asadpour, M., Boyer, O., & R Tavakkoli-Moghaddam, R. (2020). Designing blood supply chain network in disaster situation considering blood groups and expiration date.
Cheraghi, S., & Hosseini-Motlagh, S.-M. (2020). Responsive and reliable injured-oriented blood supply chain for disaster relief: a real case study. Annals of operations research, 291(1), 129-167.
Dillon, M., Oliveira, F., & Abbasi, B. (2017). A two-stage stochastic programming model for inventory management in the blood supply chain. International Journal of Production Economics, 187, 27-41.
Doodman, M., & Bozorgi Amiri, A. (2020). Integrate Blood Supply Chain Network Design with Considering Lateral Transshipment under Uncertainty. Journal of Industrial Management Perspective, 9(4, Winter 2020), 9-40.
Esmaili, M., Amjady, N., & Shayanfar, H. A. (2011). Multi-objective congestion management by modified augmented ε-constraint method. Applied Energy, 88(3), 755-766.
Gunpinar, S., & Centeno, G. (2015). Stochastic integer programming models for reducing wastages and shortages of blood products at hospitals. Computers & Operations Research, 54, 129-141.
Habibi-Kouchaksaraei, M., Paydar, M. M., & Asadi-Gangraj, E. (2018). Designing a bi-objective multi-echelon robust blood supply chain in a disaster. Applied Mathematical Modelling, 55, 583-599.
Haghjoo, N., Tavakkoli-Moghaddam, R., Shahmoradi-Moghadam, H., & Rahimi, Y. (2020). Reliable blood supply chain network design with facility disruption: A real-world application. Engineering Applications of Artificial Intelligence, 90, 103493.
Hamdan, B., & Diabat, A. (2019). A two-stage multi-echelon stochastic blood supply chain problem. Computers & Operations Research, 101, 130-143.
Heidari-Fathian, H., & Pasandideh, S. H. R. (2018). Green-blood supply chain network design: Robust optimization, bounded objective function & Lagrangian relaxation. Computers & Industrial Engineering, 122, 95-105.
Hosseini-Motlagh, S.-M., Samani, M. R. G., & Homaei, S. (2020). Blood supply chain management: robust optimization, disruption risk, and blood group compatibility (a real-life case). Journal of Ambient Intelligence and Humanized Computing, 11(3), 1085-1104.
Jabbarzadeh, A., Fahimnia, B., & Seuring, S. (2014). Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application. Transportation Research Part E: Logistics and Transportation Review, 70, 225-244.
Kazemi, Z., Homayounfar, M., Fadaei, M., Soufi, M., & Salehzadeh, A. (2022). Multi-Objective Optimization of Blood Products Supply Network to Minimize Delivery Time and Non-Estimated Hospital Demand. Journal of healthcare management, 12(4), 63-80.
Khalilpourazari, S., & Hashemi Doulabi, H. (2022). A flexible robust model for blood supply chain network design problem. Annals of operations research, 1-26.
Khalilpourazari, S., & Khamseh, A. A. (2019). Bi-objective emergency blood supply chain network design in earthquake considering earthquake magnitude: a comprehensive study with real world application. Annals of operations research, 283(1), 355-393.
Khalilpourazari, S., Soltanzadeh, S., Weber, G.-W., & Roy, S. K. (2020). Designing an efficient blood supply chain network in crisis: neural learning, optimization and case study. Annals of operations research, 289(1), 123-152.
kouchaki tajani, t., Mohtashami, A., Amiri, m., & Ehtesham Rasi, R. (2022). Design of Blood Supply Chain Optimization Model Using Fuzzy Approach and Markov Chain under Demand and Supply Uncertainty. Industrial Management Studies, -. doi:10.22054/jims.2022.57027.2575
Meneses, M., Santos, D., & Barbosa-Póvoa, A. (2022). Modelling the Blood Supply Chain–From Strategic to Tactical Decisions. European Journal of Operational Research.
Pierskalla, W. P. (2005). Supply chain management of blood banks Operations research and health care (pp. 103-145): Springer.
Rahmani, D. (2019). Designing a robust and dynamic network for the emergency blood supply chain with the risk of disruptions. Annals of operations research, 283(1), 613-641. doi:10.1007/s10479-018-2960-6
Razavi, N., Gholizadeh, H., Nayeria, S., & Ashrafi, T. A. (2020). A robust optimization model of the field hospitals in the sustainable blood supply chain in crisis logistics. Journal of the Operational Research Society, 1-26.
Salehi, F., Allahyari Emamzadeh, Y., Mirzapour, A.-E., Hashem, S. M. J., & Shafiei Aghdam, R. (2021). An L-Shaped Method to Solve a Stochastic Blood Supply Chain Network Design Problem in a Natural Disaster. Advances in Industrial Engineering, 55(1), 47-68.
Samani, M. R. G., Hosseini-Motlagh, S.-M., & Ghannadpour, S. F. (2019). A multilateral perspective towards blood network design in an uncertain environment: Methodology and implementation. Computers & Industrial Engineering, 130, 450-471.
Samani, M. R. G., Torabi, S. A., & Hosseini-Motlagh, S.-M. (2018). Integrated blood supply chain planning for disaster relief. International journal of disaster risk reduction, 27, 168-188.
Sibevei, A., Azar, A., & Zandieh, M. (2022). Developing a Two-stage Robust Stochastic Model for Designing a Resilient Blood Supply Chain Considering Earthquake Disturbances and Infectious Diseases. Industrial Management Journal, 13(4), 664-703.
Yaghobi, S., & Kamvar, M. (2017). Management of Products Consumption in Blood Supply Chain Considering Lateral Transshipment between Hospitals. Industrial Management Studies, 15(47), 93-119. doi:10.22054/jims.2017.8118
yyyyyyy, m. (2019). Reducing the cost of wastage and shortage of hospitals' blood products with regard to the compatibility of blood groups. Industrial Management Studies, 17(53), 1-31. doi:10.22054/jims.2017.16777.1598