نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مدیریت بازرگانی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 استاد، گروه مدیریت بازرگانی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل، ایران

3 دانشیار، گروه مدیریت بازرگانی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

پژوهش حاضر باهدف خوشه‌بندی کاربرد فناوری‌های دیجیتال صنعت 0/4 در شبکه توزیع مواد غذایی کشاورزی انجام شده است. برای این منظور، یک تکنیک کتاب‌سنجی برای شناسایی گرایش‌ها و مضامین برجسته در این حوزه از طریق تحلیل مقالات، نویسندگان، کشورها و هم‌استنادی نویسندگان و زوج‌های کتاب‌شناختی به کار گرفته شد. با جستجوی عمیق در پایگاه علمی اسکوپوس، اطلاعات کتاب‌شناسی تعداد 331 مقاله علمی معتبر و مرتبط دریافت گردید. اطلاعات به‌دست‌آمده وارد بسته بیبلیومتریک در نرم‌افزار R گردید و مؤثرترین مجله، نویسنده، دانشگاه و کشور و پر استنادترین نویسندگان مشخص شدند. به‌منظور مصورسازی اطلاعات از نرم‌افزار Vosviewer جهت تحلیل‌های هم‌استنادی نویسندگان، مراجع مورد استناد و زوج‌های کتاب‌شناختی استفاده شد. یافته‌های تحلیل شبکه نشان داد که مطالعات کاربرد فناوری‌های دیجیتال در شبکه توزیع مواد غذایی کشاورزی در پنج خوشه اصلی قابل‌طبقه‌بندی هستند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Clustering the application of digital technologies of Industry 4.0 in the agri-food distribution network: a bibliometric study

نویسندگان [English]

  • Allahyar Beigi Firoozi 1
  • Mohammad Bashokouh Ajirlou 2
  • Naser Seffollahi 2
  • Ghasem Zarei 3

1 PhD candidate, Department of Business Administration, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

2 Professor, Department of Business Administration, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

3 Associate prof, Department of Business Administration, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.

چکیده [English]

The current study aimed to cluster the application of digital technologies from Industry 4.0 in the agricultural food distribution network. To achieve this goal, a bibliometric technique was employed to identify prominent trends and themes in this field through the analysis of articles, authors, countries, and co-citations of authors and bibliographic pairs. Through an extensive search in the Scopus scientific database, bibliographic information for 331 valid and relevant scientific articles was acquired. This information was inputted into the bibliometric package in R software, and the most influential journal, author, university, country, and most cited authors were determined. To visualize the information, Vosviewer software was utilized for co-citation analysis of authors, cited references, and bibliographic pairs. The findings from the network analysis revealed that the studies on the application of digital technologies in the agricultural food distribution network can be categorized into five main clusters.
Introduction
Industry 4.0, viewed as a new industrial stage, has introduced complex information and communication technologies that facilitate comprehensive connections across different parts of the supply chain. The digital technologies associated with Industry 4.0 allow production lines, business processes, and teams within a supply chain to collaborate seamlessly, irrespective of location, time zone, network constraints, or any other factors. Researchers highlight that the advent of digital technologies from the fourth industrial revolution, including radio frequency identification, big data, cloud computing, smart sensors, machine learning, robotics, augmented production, artificial intelligence, augmented reality, the Internet of Things, blockchain, and similar technologies, holds immense potential for significantly enhancing production productivity. These technologies could lead to substantial innovation, competitive growth, and may contribute to improving the sustainability of the current industrial system. To meet the escalating demand for food, agricultural marketing professionals and managers globally must maximize the efficiency of the agricultural distribution network, given the widespread adoption of digital technologies. The increasing significance of this goal has prompted marketing researchers to explore the use of digital technologies in the agricultural food distribution network, leading to a substantial number of studies in this research field since 2011. In this context, the present study aimed to cluster the utilization of digital technologies in Industry 4.0 within the agricultural food distribution network. A bibliometric study was conducted to identify existing gaps in research and propose future directions. The research focuses on the application of digital technologies in the distribution network.
Aligned with the research objective, fundamental questions are posed: Which publications, authors, and countries are most influential in the application of Industry 4.0 digital technologies in the agricultural food distribution network? Additionally, what scientific clusters exist in this domain?
Methodology
The objective of the current research is to conduct a bibliographic analysis of studies related to the application of digital technologies in Industry 4.0 within the agricultural food distribution network. Utilizing bibliometric techniques, a crucial measure for evaluating scientific output, a comprehensive examination of scientific literature was carried out concerning the application of digital technologies in Industry 4.0 within the agricultural food distribution network.The search was conducted within the Scopus scientific database, which encompasses a significant array of diverse journals and authoritative articles globally. The search covered three sections: title, abstract, and keywords, yielding a list of studies that exclusively included English-language articles from journals (excluding conference studies and book chapters) published between 2011 (the inception year of Industry 4.0) and 2023. By imposing these criteria, 352 original pieces of data containing bibliographic information were obtained. Subsequently, the title and abstract of each article were meticulously scrutinized to identify information relevant to the agricultural food distribution networks. Among these, 6 articles pertaining to the halal supply chain and 15 articles conducted as systematic reviews were excluded from the bibliographic information collection. The final portfolio for analysis consisted of bibliographic information from 331 articles, which was then entered into the bibliometric software package. This analysis was carried out using R software and VOSviewer software. The bibliometric software package facilitated quantitative bibliographic analysis, while the VOSviewer software was employed for visualizing and analyzing citation networks.
Results
The quantitative findings indicate a significant increase in studies related to the adoption of digital technologies in the agricultural food distribution network, particularly after 2017. The most widely utilized digital technologies in the food distribution network include blockchain, the Internet of Things, simulation, artificial intelligence, big data, machine learning, 3D printers, sensors, and digital twins.
Through the analysis of bibliographic pairs, five primary clusters were identified concerning the application of digital technologies in the agricultural food distribution network. These clusters are associated with the use of digital technologies in ensuring food quality, enhancing distribution network flexibility, establishing modular architecture within the distribution network, implementing intelligent logistics systems, and promoting sustainable distribution networks.
Conclusion
Based on the themes of the clusters identified in Table 7, it can be concluded that the Internet of Things and blockchain play crucial roles in real-time tracking, tracing, and monitoring of food throughout the supply chain, thereby reducing wastage. RFID technologies and digital twins are highly effective in ensuring food safety and facilitating delivery to consumers, especially in the face of environmental changes and crises such as epidemics. Another application of digital technologies lies in the modular architecture of the food distribution network. Through the use of modular architecture, various technologies can modularize tasks and extensive operations within the food distribution network. Ultimately, all these components can be centralized under blockchain technology, with diverse data stored in a vast cloud space. Consistent implementation of digital technologies in the food distribution network has the potential to establish regional warehouses, resulting in reduced distribution and delivery costs, enhanced food safety and sustainability, and the possibility of customizing food for end consumers. This, in turn, will contribute to the stability of the food network.

کلیدواژه‌ها [English]

  • Industry 4.0
  • Digital Technologies
  • Distribution Network
  • Agricultural Food
  1. باشکوه، محمد و بیگی فیروزی، الله‌یار (1401). بررسی اثرات استراتژی‌های ترفیع رانش پایه‌ای و کیندر و جنتلر بر یکپارچگی تولیدکننده و اعضای کانال توزیع. بررسی‌های بازرگانی، 20(113)، 85-108. doi: 10.22034/bs.2022.247023
  2. باشکوه، محمد؛ سیف‌اللهی، ناصر و بیگی فیروزی، الله‌یار. (1399). تأثیر روابط مصرف‌کننده با نام تجاری بر وفاداری برند در بستر تجارت اجتماعی: نقش تعدیل‌گر ویژگی‌های مرتبط با تعامل شبه اجتماعی. پژوهش‌های مدیریت عمومی، 13(48)، 167-137. doi: 10.22111/jmr.2020.33162.4976
  3. حقیقی کفاش، مهدی؛ دهدشتی شاهرخ، زهره؛ خاشعی، وحید و هاجری، رضا (1399). عوامل مؤثر بر تصمیمات ساختاری شبکه توزیع و سیاستگذاری مدیریت توزیع در صنعت پخش مواد غذایی. مطالعات مدیریت صنعتی، 18(57)، 247-235. doi: 10.22054/jims.2020.44148.2339
  4. کریمی، حسین؛ جمشیدی، محمدجواد؛ بخشم، میلاد (1402). شناسایی مؤلفه‌ها و شاخص‌های پیشران در مدیریت زنجیره تأمین سبز مبتنی بر اینترنت اشیاء. مطالعات مدیریت صنعتی، 21(69)، 160-129. doi: 10.22054/jims.2023.65741.2752
  5. Rijpkema, W., Rossi, R., & G.A.J. van der Vorst, J. (2014). Effective sourcing strategies for perishable product supply chains. International Journal of Physical Distribution & Logistics Management, 44(6), 494–510. https:/‌/‌doi.org/‌10.1108/‌IJPDLM-01-2013-0013.
  6. Abbasi, R., Martinez, P., & Ahmad, R. (2022). The digitization of agricultural industry – a systematic literature review on agriculture 4.0. Smart Agricultural Technology, 2, 100042. https:/‌/‌doi.org/‌10.1016/‌j.atech.2022.100042.
  7. Akkerman, R., Farahani, P., & Grunow, M. (2010). Quality, safety and sustainability in food distribution: a review of quantitative operations management approaches and challenges. OR Spectrum, 32(4), 863–904. https:/‌/‌doi.org/‌10.1007/‌s00291-010-0223-2.
  8. Annosi, M. C., Brunetta, F., Bimbo, F., & Kostoula, M. (2021). Digitalization within food supply chains to prevent food waste. Drivers, barriers and collaboration practices. Industrial Marketing Management, 93, 208–220. https:/‌/‌doi.org/‌10.1016/‌j.indmarman.2021.01.005.
  9. Antonucci, F., Figorilli, S., Costa, C., Pallottino, F., Raso, L., & Menesatti, P. (2019). A review on blockchain applications in the agri‐food sector. Journal of the Science of Food and Agriculture, 99(14), 6129–6138. https:/‌/‌doi.org/‌10.1002/‌jsfa.9912.
  10. Arora, C., Kamat, A., Shanker, S., & Barve, A. (2022). Integrating agriculture and industry 4.0 under “agri-food 4.0” to analyze suitable technologies to overcome agronomical barriers. British Food Journal, 124(7), 2061–2095. https:/‌/‌doi.org/‌10.1108/‌BFJ-08-2021-0934.
  11. Azuara, G., Luis Tornos, J., & Luis Salazar, J. (2012). Improving RFID traceability systems with verifiable quality. Industrial Management & Data Systems, 112(3), 340–359. https:/‌/‌doi.org/‌10.1108/‌02635571211210022.
  12. Bai, C., Dallasega, P., Orzes, G., & Sarkis, J. (2020). Industry 4.0 technologies assessment: A sustainability perspective. International Journal of Production Economics, 229, 107776. https:/‌/‌doi.org/‌10.1016/‌j.ijpe.2020.107776.
  13. Barbosa, M. W. (2021). Uncovering research streams on agri-food supply chain management: A bibliometric study. Global Food Security, 28, 100517. https:/‌/‌doi.org/‌10.1016/‌j.gfs.2021.100517.
  14. Behnke, K., & Janssen, M. F. W. H. A. (2020). Boundary conditions for traceability in food supply chains using blockchain technology. International Journal of Information Management, 52, 101969. https:/‌/‌doi.org/‌10.1016/‌j.ijinfomgt.2019.05.025.
  15. Bogataj, D., Bogataj, M., & Hudoklin, D. (2017). Mitigating risks of perishable products in the cyber-physical systems based on the extended MRP model. International Journal of Production Economics, 193, 51–62. https:/‌/‌doi.org/‌10.1016/‌j.ijpe.2017.06.028.
  16. Bosona, T., & Gebresenbet, G. (2013). Food traceability as an integral part of logistics management in food and agricultural supply chain. Food Control, 33(1), 32–48. https:/‌/‌doi.org/‌10.1016/‌j.foodcont.2013.02.004.
  17. Bottani, E., Mannino, F., Vignali, G., & Montanari, R. (2018). A routing and location model for food waste recovery in the retail and distribution phase. International Journal of Logistics Research and Applications, 21(6), 557–578. https:/‌/‌doi.org/‌10.1080/‌13675567.2018.1458826.
  18. Bumblauskas, D., Mann, A., Dugan, B., & Rittmer, J. (2020). A blockchain use case in food distribution: Do you know where your food has been? International Journal of Information Management, 52, 102008. https:/‌/‌doi.org/‌10.1016/‌j.ijinfomgt.2019.09.004.
  19. Burgos, D., & Ivanov, D. (2021). Food retail supply chain resilience and the COVID-19 pandemic: A digital twin-based impact analysis and improvement directions. Transportation Research Part E: Logistics and Transportation Review, 152, 102412. https:/‌/‌doi.org/‌10.1016/‌j.tre.2021.102412.
  20. Casino, F., Kanakaris, V., Dasaklis, T. K., Moschuris, S., Stachtiaris, S., Pagoni, M., & Rachaniotis, N. P. (2021). Blockchain-based food supply chain traceability: a case study in the dairy sector. International Journal of Production Research, 59(19), 5758–5770. https:/‌/‌doi.org/‌10.1080/‌00207543.2020.1789238.
  21. Ciulli, F., Kolk, A., & Boe-Lillegraven, S. (2020). Circularity Brokers: Digital Platform Organizations and Waste Recovery in Food Supply Chains. Journal of Business Ethics, 167(2), 299–331. https:/‌/‌doi.org/‌10.1007/‌s10551-019-04160-5.
  22. Cozzio, C., Viglia, G., Lemarie, L., & Cerutti, S. (2023). Toward an integration of blockchain technology in the food supply chain. Journal of Business Research, 162, 113909. https:/‌/‌doi.org/‌10.1016/‌j.jbusres.2023.113909.
  23. Dalenogare, L. S., Benitez, G. B., Ayala, N. F., & Frank, A. G. (2018). The expected contribution of Industry 4.0 technologies for industrial performance. International Journal of Production Economics, 204, 383–394. https:/‌/‌doi.org/‌10.1016/‌j.ijpe.2018.08.019.
  24. Danloup, N., Mirzabeiki, V., Allaoui, H., Goncalves, G., Julien, D., & Mena, C. (2015). Reducing transportation greenhouse gas emissions with collaborative distribution. Management Research Review, 38(10), 1049–1067. https:/‌/‌doi.org/‌10.1108/‌MRR-11-2014-0262.
  25. Dellino, G., Laudadio, T., Mari, R., Mastronardi, N., & Meloni, C. (2018). A reliable decision support system for fresh food supply chain management. International Journal of Production Research, 56(4), 1458–1485. https:/‌/‌doi.org/‌10.1080/‌00207543.2017.1367106.
  26. Dutta, P., Choi, T.-M., Somani, S., & Butala, R. (2020). Blockchain technology in supply chain operations: Applications, challenges and research opportunities. Transportation Research Part E: Logistics and Transportation Review, 142, 102067. https:/‌/‌doi.org/‌10.1016/‌j.tre.2020.102067.
  27. Erol, I., Ar, I. M., Ozdemir, A. I., Peker, I., Asgary, A., Medeni, I. T., & Medeni, T. (2021). Assessing the feasibility of blockchain technology in industries: evidence from Turkey. Journal of Enterprise Information Management, 34(3), 746–769. https:/‌/‌doi.org/‌10.1108/‌JEIM-09-2019-0309.
  28. Feng, Q., He, D., Zeadally, S., Khan, M. K., & Kumar, N. (2019). A survey on privacy protection in blockchain system. Journal of Network and Computer Applications, 126, 45–58. https:/‌/‌doi.org/‌10.1016/‌j.jnca.2018.10.020.
  29. Fikar, C., Hirsch, P., & Gronalt, M. (2018). A decision support system to investigate dynamic last-mile distribution facilitating cargo-bikes. International Journal of Logistics Research and Applications, 21(3), 300–317. https:/‌/‌doi.org/‌10.1080/‌13675567.2017.1395830.
  30. Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International Journal of Production Economics, 210, 15–26. https:/‌/‌doi.org/‌10.1016/‌j.ijpe.2019.01.004.
  31. Friedman, N., & Ormiston, J. (2022). Blockchain as a sustainability-oriented innovation?: Opportunities for and resistance to Blockchain technology as a driver of sustainability in global food supply chains. Technological Forecasting and Social Change, 175, 121403. https:/‌/‌doi.org/‌10.1016/‌j.techfore.2021.121403.
  32. Galvez, J. F., Mejuto, J. C., & Simal-Gandara, J. (2018). Future challenges on the use of blockchain for food traceability analysis. TrAC Trends in Analytical Chemistry, 107, 222–232. https:/‌/‌doi.org/‌10.1016/‌j.trac.2018.08.011.
  33. Garzoni, A., de Turi, I., Secundo, G., & del Vecchio, P. (2020). Fostering digital transformation of SMEs: a four levels approach. Management Decision, 58(8), 1543–1562. https:/‌/‌doi.org/‌10.1108/‌MD-07-2019-0939.
  34. George, R. V., Harsh, H. O., Ray, P., & Babu, A. K. (2019). Food quality traceability prototype for restaurants using blockchain and food quality data index. Journal of Cleaner Production, 240, 118021. https:/‌/‌doi.org/‌10.1016/‌j.jclepro.2019.118021.
  35. Grunow, M., & Piramuthu, S. (2013). RFID in highly perishable food supply chains – Remaining shelf life to supplant expiry date? International Journal of Production Economics, 146(2), 717–727. https:/‌/‌doi.org/‌10.1016/‌j.ijpe.2013.08.028.
  36. Gružauskas, V., Baskutis, S., & Navickas, V. (2018). Minimizing the trade-off between sustainability and cost effective performance by using autonomous vehicles. Journal of Cleaner Production, 184, 709–717. https:/‌/‌doi.org/‌10.1016/‌j.jclepro.2018.02.302.
  37. Haass, R., Dittmer, P., Veigt, M., & Lütjen, M. (2015). Reducing food losses and carbon emission by using autonomous control – A simulation study of the intelligent container. International Journal of Production Economics, 164, 400–408. https:/‌/‌doi.org/‌10.1016/‌j.ijpe.2014.12.013.
  38. Hastig, G. M., & Sodhi, M. S. (2020). Blockchain for Supply Chain Traceability: Business Requirements and Critical Success Factors. Production and Operations Management, 29(4), 935–954. https:/‌/‌doi.org/‌10.1111/‌poms.13147.
  39. Hughes, N., & Lonie, S. (2007). M-PESA: Mobile Money for the “Unbanked” Turning Cellphones into 24-Hour Tellers in Kenya. Innovations: Technology, Governance, Globalization, 2(1–2), 63–81. https:/‌/‌doi.org/‌10.1162/‌itgg.2007.2.1-2.63.
  40. Jagtap, S., Bader, F., Garcia-Garcia, G., Trollman, H., Fadiji, T., & Salonitis, K. (2020). Food Logistics 4.0: Opportunities and Challenges. Logistics, 5(1), 2. https:/‌/‌doi.org/‌10.3390/‌logistics5010002.
  41. Javaid, M., Haleem, A., Singh, R. P., Suman, R., & Gonzalez, E. S. (2022). Understanding the adoption of Industry 4.0 technologies in improving environmental sustainability. Sustainable Operations and Computers, 3, 203–217. https:/‌/‌doi.org/‌10.1016/‌j.susoc.2022.01.008.
  42. Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2020). Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. International Journal of Production Economics, 219, 179–194. https:/‌/‌doi.org/‌10.1016/‌j.ijpe.2019.05.022.
  43. Kamble, S. S., Gunasekaran, A., & Sharma, R. (2020). Modeling the blockchain enabled traceability in agriculture supply chain. International Journal of Information Management, 52, 101967. https:/‌/‌doi.org/‌10.1016/‌j.ijinfomgt.2019.05.023.
  44. Kamble, S., Gunasekaran, A., & Arha, H. (2019). Understanding the Blockchain technology adoption in supply chains-Indian context. International Journal of Production Research, 57(7), 2009–2033. https:/‌/‌doi.org/‌10.1080/‌00207543.2018.1518610.
  45. Kayikci, Y., Subramanian, N., Dora, M., & Bhatia, M. S. (2022). Food supply chain in the era of Industry 4.0: blockchain technology implementation opportunities and impediments from the perspective of people, process, performance, and technology. Production Planning & Control, 33(2–3), 301–321. https:/‌/‌doi.org/‌10.1080/‌09537287.2020.1810757.
  46. Kim, H. M., & Laskowski, M. (2018). Toward an ontology-driven blockchain design for supply-chain provenance. Intelligent Systems in Accounting, Finance and Management, 25(1), 18–27. https:/‌/‌doi.org/‌10.1002/‌isaf.1424.
  47. Kittipanya-ngam, P., & Tan, K. H. (2020). A framework for food supply chain digitalization: lessons from Thailand. Production Planning & Control, 31(2–3), 158–172. https:/‌/‌doi.org/‌10.1080/‌09537287.2019.1631462.
  48. Klerkx, L., Jakku, E., & Labarthe, P. (2019). A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS: Wageningen Journal of Life Sciences, 90–91(1), 1–16. https:/‌/‌doi.org/‌10.1016/‌j.njas.2019.100315.
  49. Köhler, S., & Pizzol, M. (2020). Technology assessment of blockchain-based technologies in the food supply chain. Journal of Cleaner Production, 269, 122193. https:/‌/‌doi.org/‌10.1016/‌j.jclepro.2020.122193.
  50. Köhler, S., Bager, S., & Pizzol, M. (2022). Sustainability standards and blockchain in agro-food supply chains: Synergies and conflicts. Technological Forecasting and Social Change, 185, 122094. https:/‌/‌doi.org/‌10.1016/‌j.techfore.2022.122094.
  51. Kouhizadeh, M., Saberi, S., & Sarkis, J. (2021). Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers. International Journal of Production Economics, 231, 107831. https:/‌/‌doi.org/‌10.1016/‌j.ijpe.2020.107831.
  52. Kumar, A., Liu, R., & Shan, Z. (2020). Is Blockchain a Silver Bullet for Supply Chain Management? Technical Challenges and Research Opportunities. Decision Sciences, 51(1), 8–37. https:/‌/‌doi.org/‌10.1111/‌deci.12396.
  53. Latino, M. E., Menegoli, M., Lazoi, M., & Corallo, A. (2022). Voluntary traceability in food supply chain: a framework leading its implementation in Agriculture 4.0. Technological Forecasting and Social Change, 178, 121564. https:/‌/‌doi.org/‌10.1016/‌j.techfore.2022.121564.
  54. Leduc, G., Kubler, S., & Georges, J.-P. (2021). Innovative blockchain-based farming marketplace and smart contract performance evaluation. Journal of Cleaner Production, 306, 127055. https:/‌/‌doi.org/‌10.1016/‌j.jclepro.2021.127055.
  55. Li, Z., Liu, G., Liu, L., Lai, X., & Xu, G. (2017). IoT-based tracking and tracing platform for prepackaged food supply chain. Industrial Management & Data Systems, 117(9), 1906–1916. https:/‌/‌doi.org/‌10.1108/‌IMDS-11-2016-0489.
  56. Liu, P., Long, Y., Song, H.-C., & He, Y.-D. (2020). Investment decision and coordination of green agri-food supply chain considering information service based on blockchain and big data. Journal of Cleaner Production, 277, 123646. https:/‌/‌doi.org/‌10.1016/‌j.jclepro.2020.123646.
  57. Liu, Y., Ma, X., Shu, L., Hancke, G. P., & Abu-Mahfouz, A. M. (2021). From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges. IEEE Transactions on Industrial Informatics, 17(6), 4322–4334. https:/‌/‌doi.org/‌10.1109/‌TII.2020.3003910.
  58. Mangla, S. K., Kazancoglu, Y., Ekinci, E., Liu, M., Özbiltekin, M., & Sezer, M. D. (2021). Using system dynamics to analyze the societal impacts of blockchain technology in milk supply chainsrefer. Transportation Research Part E: Logistics and Transportation Review, 149, 102289. https:/‌/‌doi.org/‌10.1016/‌j.tre.2021.102289.
  59. Martínez-Castañeda, M., & Feijoo, C. (2023). Use of blockchain in the agri-food value chain: State of the art in Spain and some lessons from the perspective of public support. Telecommunications Policy, 47(6), 102574. https:/‌/‌doi.org/‌10.1016/‌j.telpol.2023.102574.
  60. Mishra, H., & Maheshwari, P. (2021). Blockchain in Indian Public Distribution System: a conceptual framework to prevent leakage of the supplies and its enablers and disablers. Journal of Global Operations and Strategic Sourcing, 14(2), 312–335. https:/‌/‌doi.org/‌10.1108/‌JGOSS-07-2020-0044.
  61. Nakandala, D., Lau, H., & Zhang, J. (2016). Cost-optimization modelling for fresh food quality and transportation. Industrial Management & Data Systems, 116(3), 564–583. https:/‌/‌doi.org/‌10.1108/‌IMDS-04-2015-0151.
  62. Niknejad, N., Ismail, W., Bahari, M., Hendradi, R., & Salleh, A. Z. (2021). Mapping the research trends on blockchain technology in food and agriculture industry: A bibliometric analysis. Environmental Technology & Innovation, 21, 101272. https:/‌/‌doi.org/‌10.1016/‌j.eti.2020.101272.
  63. Nisa, C., rita, V., & Chalid, D. A. (2022). Impact of competition on microfinance institutions: bibliometric analysis and systematic literature review. Heliyon, 8(10), e10749. https:/‌/‌doi.org/‌10.1016/‌j.heliyon.2022.e10749.
  64. Olan, F., Liu, S., Suklan, J., Jayawickrama, U., & Arakpogun, E. O. (2022). The role of Artificial Intelligence networks in sustainable supply chain finance for food and drink industry. International Journal of Production Research, 60(14), 4418–4433. https:/‌/‌doi.org/‌10.1080/‌00207543.2021.1915510.
  65. Pandey, V., Pant, M., & Snasel, V. (2022). Blockchain technology in food supply chains: Review and bibliometric analysis. Technology in Society, 69, 101954. https:/‌/‌doi.org/‌10.1016/‌j.techsoc.2022.101954.
  66. Queiroz, M. M., & Fosso Wamba, S. (2019). Blockchain adoption challenges in supply chain: An empirical investigation of the main drivers in India and the USA. International Journal of Information Management, 46, 70–82. https:/‌/‌doi.org/‌10.1016/‌j.ijinfomgt.2018.11.021.
  67. Raj, A., Dwivedi, G., Sharma, A., Lopes de Sousa Jabbour, A. B., & Rajak, S. (2020). Barriers to the adoption of industry 4.0 technologies in the manufacturing sector: An inter-country comparative perspective. International Journal of Production Economics, 224, 107546. https:/‌/‌doi.org/‌10.1016/‌j.ijpe.2019.107546.
  68. Rogerson, M., & Parry, G. C. (2020). Blockchain: case studies in food supply chain visibility. Supply Chain Management: An International Journal, 25(5), 601–614. https:/‌/‌doi.org/‌10.1108/‌SCM-08-2019-0300.
  69. Ronaghi, M. H. (2021). A blockchain maturity model in agricultural supply chain. Information Processing in Agriculture, 8(3), 398–408. https:/‌/‌doi.org/‌10.1016/‌J.INPA.2020.10.004.
  70. Sampathkumar, K., Tan, K. X., & Loo, S. C. J. (2020). Developing Nano-Delivery Systems for Agriculture and Food Applications with Nature-Derived Polymers. IScience, 23(5), 101055. https:/‌/‌doi.org/‌10.1016/‌J.ISCI.2020.101055.
  71. Sander, F., Semeijn, J., & Mahr, D. (2018). The acceptance of blockchain technology in meat traceability and transparency. British Food Journal, 120(9), 2066–2079. https:/‌/‌doi.org/‌10.1108/‌BFJ-07-2017-0365.
  72. Sarker, S., Jamal, L., Ahmed, S. F., & Irtisam, N. (2021). Robotics and artificial intelligence in healthcare during COVID-19 pandemic: A systematic review. Robotics and Autonomous Systems, 146, 103902. https:/‌/‌doi.org/‌10.1016/‌J.ROBOT.2021.103902.
  73. Saurabh, S., & Dey, K. (2021). Blockchain technology adoption, architecture, and sustainable agri-food supply chains. Journal of Cleaner Production, 284, 124731. https:/‌/‌doi.org/‌10.1016/‌j.jclepro.2020.124731.
  74. Saveen A. Abeyratne. (2016). Blockchain ready manufacturing supply chain using distributed ledger. International Journal of Research in Engineering and Technology, 05(09), 1–10. https:/‌/‌doi.org/‌10.15623/‌ijret.2016.0509001.
  75. Shahzad, K., Zhang, Q., Zafar, A. U., Ashfaq, M., & Rehman, S. U. (2023). The role of blockchain-enabled traceability, task technology fit, and user self-efficacy in mobile food delivery applications. Journal of Retailing and Consumer Services, 73, 103331. https:/‌/‌doi.org/‌10.1016/‌j.jretconser.2023.103331.
  76. Shashi, Centobelli, P., Cerchione, R., & Ertz, M. (2020). Agile supply chain management: where did it come from and where will it go in the era of digital transformation? Industrial Marketing Management, 90, 324–345. https:/‌/‌doi.org/‌10.1016/‌j.indmarman.2020.07.011.
  77. Silveira, F., Lermen, F. H., & Amaral, F. G. (2021). An overview of agriculture 4.0 development: Systematic review of descriptions, technologies, barriers, advantages, and disadvantages. Computers and Electronics in Agriculture, 189, 106405. https:/‌/‌doi.org/‌10.1016/‌j.compag.2021.106405.
  78. Sott, M. K., Furstenau, L. B., Kipper, L. M., Giraldo, F. D., Lopez-Robles, J. R., Cobo, M. J., Zahid, A., Abbasi, Q. H., & Imran, M. A. (2020). Precision Techniques and Agriculture 4.0 Technologies to Promote Sustainability in the Coffee Sector: State of the Art, Challenges and Future Trends. IEEE Access, 8, 149854–149867. https:/‌/‌doi.org/‌10.1109/‌ACCESS.2020.3016325.
  79. Souza Vasconcelos, C., & Hadad Júnior, E. (2023). Forecasting exchange rate: A bibliometric and content analysis. International Review of Economics & Finance, 83, 607–628. https:/‌/‌doi.org/‌10.1016/‌j.iref.2022.09.006.
  80. Subeesh, A., & Mehta, C. R. (2021). Automation and digitization of agriculture using artificial intelligence and internet of things. Artificial Intelligence in Agriculture. https:/‌/‌doi.org/‌10.1016/‌J.AIIA.2021.11.004.
  81. Ting, S. L., Tse, Y. K., Ho, G. T. S., Chung, S. H., & Pang, G. (2014). Mining logistics data to assure the quality in a sustainable food supply chain: A case in the red wine industry. International Journal of Production Economics, 152, 200–209. https:/‌/‌doi.org/‌10.1016/‌j.ijpe.2013.12.010.
  82. Treiblmaier, H. (2018). The impact of the blockchain on the supply chain: a theory-based research framework and a call for action. Supply Chain Management: An International Journal, 23(6), 545–559. https:/‌/‌doi.org/‌10.1108/‌SCM-01-2018-0029.
  83. Tsang, Y. P., Wu, C. H., Lam, H. Y., Choy, K. L., & Ho, G. T. S. (2021). Integrating Internet of Things and multi-temperature delivery planning for perishable food E-commerce logistics: a model and application. International Journal of Production Research, 59(5), 1534–1556. https:/‌/‌doi.org/‌10.1080/‌00207543.2020.1841315.
  84. Tsolakis, N., Niedenzu, D., Simonetto, M., Dora, M., & Kumar, M. (2021). Supply network design to address United Nations Sustainable Development Goals: A case study of blockchain implementation in Thai fish industry. Journal of Business Research, 131, 495–519. https:/‌/‌doi.org/‌10.1016/‌j.jbusres.2020.08.003.
  85. Wang, M., Cheng, Q., Huang, J., & Cheng, G. (2021). Research on optimal hub location of agricultural product transportation network based on hierarchical hub-and-spoke network model. Physica A: Statistical Mechanics and Its Applications, 566, 125412. https:/‌/‌doi.org/‌10.1016/‌J.PHYSA.2020.125412.
  86. Wang, Y.-J., Deering, A. J., & Kim, H.-J. (2020). The Occurrence of Shiga Toxin-Producing E. coli in Aquaponic and Hydroponic Systems. Horticulturae, 6(1), 1. https:/‌/‌doi.org/‌10.3390/‌horticulturae6010001.
  87. Wassenaer, L., Verdouw, C., Kassahun, A., van Hilten, M., van der Meij, K., & Tekinerdogan, B. (2023). Tokenizing circularity in agri-food systems: A conceptual framework and exploratory study. Journal of Cleaner Production, 413, 137527. https:/‌/‌doi.org/‌10.1016/‌j.jclepro.2023.137527.
  88. Yadav, S., Luthra, S., & Garg, D. (2022). Internet of things (IoT) based coordination system in Agri-food supply chain: development of an efficient framework using DEMATEL-ISM. Operations Management Research, 15(1–2), 1–27. https:/‌/‌doi.org/‌10.1007/‌s12063-020-00164-x.
  89. Yan, B., Yan, C., Ke, C., & Tan, X. (2016). Information sharing in supply chain of agricultural products based on the Internet of Things. Industrial Management & Data Systems, 116(7), 1397–1416. https:/‌/‌doi.org/‌10.1108/‌IMDS-12-2015-0512.
  90. Yang, T. (2019). ICT technologies standards and protocols for active distribution network. Smart Power Distribution Systems: Control, Communication, and Optimization, 205–230. https:/‌/‌doi.org/‌10.1016/‌B978-0-12-812154-2.00010-9.
  91. Zhang, Y., Zhao, L., & Qian, C. (2017). Modeling of an IoT-enabled supply chain for perishable food with two-echelon supply hubs. Industrial Management & Data Systems, 117(9), 1890–1905. https:/‌/‌doi.org/‌10.1108/‌IMDS-10-2016-0456.
  92. Zheng, T., Ardolino, M., Bacchetti, A., & Perona, M. (2021). The applications of Industry 4.0 technologies in manufacturing context: a systematic literature review. International Journal of Production Research, 59(6), 1922–1954. https:/‌/‌doi.org/‌10.1080/‌00207543.2020.1824085.