نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت ساخت، دانشکده عمران، معماری و هنر، دانشگاه آزاد اسلامی واحد علوم تحقیقات، تهران، ایران

2 دانشیار، گروه مدیریت ساخت، دانشکده عمران، معماری و هنر، دانشگاه آزاد اسلامی واحد علوم تحقیقات، تهران، ایران

3 استادیار، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد تهران شرق، تهران، ایران

چکیده

مدیریت ایمنی و بهداشت حرفه ای تأثیرات بسزایی بر کاهش هزینه، افزایش بهره وری و اعتبار اجتماعی شرکتهای فعال در صنعت ساخت داشته و نقشی تسهیلگر در گذار آنها بهسوی توسعه پایدار ایفا میکند. با نگاهی بر آمارهای رسمی در پروژههای ساخت، اهمیت توجه به مدیریت ریسک ایمنی و بهداشت حرفهای از منظر پایداری بیش از پیش نمایان میشود. پژوهش حاضر در قالب مطالعه کاربردی-پیمایشی و با هدف شناسایی و تحلیل کمّی ریسکهای ایمنی و بهداشت حرفهای در پروژههای ساخت پایدار ایران انجام گرفت. با انجام مطالعات کتابخانهای و نظرسنجی با 13 نفر از صاحبنظران فعال در پروژههای ساخت پایدار در جلسه گروه کانونی که به روش نمونهگیری گلوله برفی انتخاب شدند، شناسایی ریسکهای ایمنی در پروژههای ساخت پایدار انجام گرفت. سپس برای اهمیت سنجی و تعیین ریسکهای اولویتدار، روش تصمیمگیری چندشاخصه بهترین بدترین گروهی نوتروسوفیک ضمن اعمال وزن به نظر خبرگان پیادهسازی شد. فضای حل نوتروسوفیک با اعمال عدمقطعیتهای موجود در دیدگاههای خبرگان، زمینه را برای حصول نتایج دقیق و قابل اتکاتر فراهم میساخت. یافتهها نشان داد که فقدان مهارت کافی ایمنی کارکنان به علت عدم تخصیص زمان به آموزش تخصصی ایمنی، جراحات و بیماریهای حرفهای، خطرات ناشی از طراحی و آرایش نامناسب سایت پروژه، ضعف و ناکارآمدی پرسنل مدیریتی ایمنی و بهداشت حرفهای و بیتوجهی و عدم برنامه ریزی برای مانورهای اضطراری به ترتیب با اوزان 052/0، 036/0، 035/0، 032/0 و 028/0، کلیدیترین ریسکهای ایمنی و بهداشت حرفهای در پروژههای ساخت پایدار ایران بودند که در انتها اقدامات واکنشی و پیشگیرانه مقضی برای مواجهه با آنها ارایه شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Identification and quantitative analysis of occupational health and safety risks in sustainable construction projects under Neutrosophic space

نویسندگان [English]

  • Amir Hossein Soltaninia 1
  • Mahdi Ravanshadnia 2
  • Milad Ghanbari 3

1 Ph.D. student in construction Management, Faculty of Civil, Architecture, and Art, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Associate Professor, Department of Construction Management, Faculty of Civil, Architecture, and Art, Science and Research Branch, Islamic Azad University, Tehran, Iran

3 Assistant Professor, Department of Civil Engineering, Faculty of Technical and Engineering, Tehran East Branch, Islamic Azad University, Tehran, Iran

چکیده [English]

Occupational Health and Safety (OHS) management significantly affects reducing costs, increasing productivity, and the social credibility of construction companies and plays a facilitating role in the transition towards sustainable development. This study aims to identify and quantitatively analyze OHS risks in sustainable construction projects in Iran. To do this, first, common OHS risks are identified by conducting library studies. Then, these risks are screened and localized for Iran's sustainable construction projects by surveying 13 experts, selected by the snowball sampling method, in a focus group meeting. Afterward, each risk's importance and priority are determined using the Neutrosophic Group Best-Worst Multi-criteria (NGBWM) method, while applying a weight to each expert's opinion. The Neutrosophic sets theory provides the basis for obtaining accurate and more reliable results by considering the uncertainties in the experts' opinions. The findings showed that "the lack of sufficient safety skills of employees due to not allocating time to specialized safety training," "occupational injuries and diseases," "hazards caused by improper design and layout of the project site," "Weakness and inefficiency of occupational health and safety management personnel," and "Negligence and lack of planning for emergency maneuvers," with weights of 0.052, 0.036, 0.035, 0.032, and 0.028 respectively, are the most critical OHS risks in Iran's sustainable construction projects. Finally, reactive and preventive responses were proposed to face them in detail.
Introduction
The construction industry is one of the most dangerous industries worldwide, and Iran is no exception. According to reports from Iran's official institutions, 30-35% of work-related accidents occur in the construction sector. Furthermore, analysis of construction accidents indicates that 22% of accidents occur in the stages of preparation and demolition, while 61% occur during the construction phase (Alipour-Bashary et al., 2021). Research has revealed that sustainable construction projects pose a greater risk to health and safety than conventional construction processes. The health and safety of workers are essential aspects of social sustainability. However, the importance of health and safety risk assessment in sustainable construction projects is still in its early stages (Onubi et al., 2019). Given the complexity and challenges in the Occupational Health and Safety (OHS) risk assessment environment, it is crucial to develop a suitable mechanism for identifying and measuring safety risks in sustainable construction projects. This would enable finding the best solutions for risks that have a high probability of occurrence and severe consequences. The current research aims to answer the following main question: What are the key OHS risks in sustainable construction projects in Iran and the appropriate response and preventive actions for them?
Literature eview
Reviewing previous research shows that while risk management in construction projects is not a new concept, the focus on the safety of construction projects in recent years is a relatively recent development. Furthermore, with leading international companies in the construction industry increasingly embracing sustainable development, there is a growing interest in integrating safety risk management with sustainable practices, making this perspective unique and novel. Previous studies on the safety risks of construction projects have typically categorized these risks within the dimensions of Health, Safety, and Environment (HSE), often neglecting other dimensions of safety risks. In contrast, the current research proposes to combine the three aspects of sustainable development (economic, social, and environmental) with the dimensions of HSE, thereby offering a more comprehensive framework for organizing the safety risks of construction projects. A significant research gap in this field lies in the evaluation and quantitative analysis of identified risks. To address this gap, the current research employs the Neutrosophic Group Best-Worst Multi-criteria (NGBWM) method, which involves weighting experts' perspectives to provide a more robust and reliable assessment of safety risks.
Methodology
The current research was applied with a purposeful and descriptive survey approach. Data were collected from 13 project managers and executive officials in Iran's sustainable construction projects, sampled using the snowball method. Semi-structured interviews and two researcher-made questionnaires were employed to gather the required data. The research objectives were pursued through a proposed methodological framework comprising five main phases. In this study, Occupational Health and Safety (OHS) risks in sustainable construction projects were evaluated and analyzed within a neutrosophic space and through group decision-making. Following the identification of the final risks, the Neutrosophic Group Best-Worst Multi-criteria (NGBWM) method was applied using the General Algebraic Modeling System (GAMS) to measure importance and determine high-ranked risks. The group decision-making approach aimed to mitigate bias in results and enhance decision accuracy by leveraging collective wisdom. Implementing the NGBWM method in the neutrosophic space helped reduce uncertainty in subjective judgments and enhance decision accuracy through the use of three or four-point estimates and consideration of possibility functions for experts' opinions.
 Results
According to the results, 45 Occupational Health and Safety (OHS) risks were identified for Iran’s sustainable construction industry. The application of the Neutrosophic Group Best-Worst Multi-criteria (NGBWM) method revealed that risks such as "lack of sufficient safety skills of employees due to not allocating time to specialized safety training," "occupational injuries and diseases," "hazards caused by improper design and layout of the project site," "Weakness and inefficiency of OHS management personnel," and "Negligence and lack of planning for emergency maneuvers," respectively, had the most significant importance and the highest ranks, with weights of 0.052, 0.036, 0.035, 0.032, and 0.028.
Discussion
The inadequacy of specialized training programs in the field of safety has been identified as the root cause of many OHS risks in Iran’s sustainable construction projects. The role of the human resources unit in enhancing and nurturing a skilled and knowledgeable workforce in the principles and standards of safety in sustainable construction projects is more crucial than ever. It is imperative to prioritize the quality of work and personal life of human resources. Designing an efficient incentive system, providing health insurance for employees, conducting periodic check-ups, and offering comprehensive training programs can serve as preventive measures to mitigate the occurrence of injuries and occupational diseases. These proactive steps not only enhance workplace safety but also contribute to the overall well-being and productivity of the workforce in sustainable construction projects.
Conclusion
The occurrence of safety risks in sustainable construction projects is multifaceted and does not solely stem from individual carelessness or unexpected accidents. Instead, these risks originate from various areas including social, managerial, structural, and health domains. Consequently, solely focusing on OHS risks in a one-dimensional manner and lacking a systematic and comprehensive view of this issue hinder managers and decision-makers from accurately understanding and analyzing the main sources of risks and implementing appropriate preventive measures.

کلیدواژه‌ها [English]

  • Safety management
  • Sustainable development
  • Risk assessment
  • Neutrosophic Group Best-Worst Multi-criteria method
  • Single-Valued Triangular Neutrosophic numbers
  1. آسیوندزاده، احسان، جمالی زاده، زینب، صفری واریانی، علی، محبی، افشین و خوشنواز، حدیث (۱۳۹۹). بررسی تأثیر مداخلات آموزشی و فنی بر بهبود فرهنگ ایمنی و درک ریسک موقعیت‌های خطرناک کار در ارتفاع در میان کارگران پروژه‌های ساختوساز. نشریه سلامت و بهداشت، 11(۱)، 122-۱۰۹. http://dx.doi.org/10.29252/j.health.11.1.109
  2. پرکره، محمدحسین، جلالیان، عسگر، و منوری، سیدمسعود. (1401). شناسایی و ارزیابی پارامترهای بهداشت، ایمنی و محیط زیستی مؤثر بر پروژههای ساخت‌وساز شهری با تأکید بر توسعه پایدار. مهندسی بهداشت حرفه‌ای، 9(2)، 136-142. http://johe.umsha.ac.ir/article-1-807-fa.html
  3. جعفرنیا، احسان، سلطان‌زاده، احمد و قیاسی، سمیرا (۱۳۹۶). مدل تلفیقی ارزیابی ریسک بهداشت، ایمنی و محیط‌زیست (HSE) بر اساس استاندارد راهنمای مدیریت پروژه PMBOK. مجله مهندسی بهداشت حرفهای، 4(۴)، 58-47. http://dx.doi.org/10.21859/johe.4.4.47
  4. طاهرخانی، فرهاد، میرزا، ابراهیم، طهرانی، مهناز و ملماسی، سعید (۱۳۹۶). ارزیابی ریسکهای ایمنی بر اساس منطق فازی در پروژههای ساخت مترو. مجله مهندسی بهداشت حرفهای، 4(۳)، 62-49. http://dx.doi.org/10.21859/johe.4.3.49
  5. گلزار راغب، سعید، موسوی، سید میثم، گیتی نورد، حسین و وحدانی، بهنام (1395). مدل تصمیمگیری گروهی سازشی فازی تردیدی با در نظر گرفتن وزن تصمیمگیران به‌منظور ارزیابی ریسکهای ایمنی در پروژههای تولیدی (صنعت کشتی‌سازی)، نشریه پژوهشهای مهندسی صنایع در سیستمهای تولید، (7)4، 103-93. https://doi.org/10.22084/ier.2016.1571
  6. مهاجری برج قلعه، رضا، پوررستم، توحید، شریفلو، ناصر منصور، مجروحی سرد رود، جواد، و صفا، ابراهیم. (1401). بهبود فرآیند مدیریت ریسک پروژه در پروژههای ساخت با ارائه یک روش پیشنهادی بر اساس استاندارد PMBOK و مدل SHAMPU. مهندسی سازه و ساخت، 9(5)، 5-19. https://doi.org/10.22065/jsce.2021.263171.2317
  7. میرزایی متین، دانیال و پارسایی، محمود (1396). مدیریت ریسک و ایمنی در پروژههای ساختوساز، سومین همایش ملی آتش‌نشانی و ایمنی شهری، تهران. https://civilica.com/doc/743813
  8. هروی، غلامرضا، و کتابی، امیربهادر. (1400). تدوین مدلهای ارزیابی سطح ایمنی پروژههای ساختمانی به روشهای رگرسیون چندمتغیره خطی و شبکه‌ی بیزین. مهندسی عمران امیرکبیر (امیرکبیر)، 53(11)، 4657-4682. https://doi.org/10.22060/ceej.2020.18439.6872
  9. Adabre, M. A., Chan, A. P., Darko, A., Osei-Kyei, R., Abidoye, R., & Adjei-Kumi, T. (2020). Critical barriers to sustainability attainment in affordable housing: International construction professionals’ perspective. Journal of Cleaner Production, 253, 119995. https://doi.org/10.1016‌/j.jclepro.2020.119995
  10. Alipour-Bashary, M., Ravanshadnia, M., Abbasianjahromi, H., & Asnaashari, E. (2021). A Hybrid Fuzzy Risk Assessment Framework for Determining Building Demolition Safety Index. KSCE Journal of Civil Engineering, 25(4), 1144-1162. https://doi.org/10.1007/s12205-021-0812-4
  11. Amrutha, V. N., and Geetha, S. N. (2020). A systematic review on green human resource management: Implications for social sustainability. Journal of Cleaner Production, Vol. 247, 119131. https://doi.org/10.1016/j.jclepro.2019.119131.
  12. Belayutham, S., Gonzalez, V. A., & Yiu, T. W. (2016). A cleaner production-pollution prevention based framework for construction site induced water pollution. Journal of Cleaner Production, 135, 1363-1378. https://doi.org/10.1016/j.jclepro.2016.07.003.
  13. Chan, D. W., Chan, A. P., Lam, P. T., Yeung, J. F., & Chan, J. H. (2011). Risk ranking and analysis in target cost contracts: Empirical evidence from the construction industry. International Journal of Project Management, 29(6), 751-763. https://doi.org/10.1016/j.ijproman.2010.08.003.
  14. Chen, C., & Reniers, G. (2020). Chemical industry in China: The current status, safety problems, and pathways for future sustainable development. Safety science, 128, 104741. https://doi.org/10.1016/j.ssci.2020.104741.
  15. Chen, Q. Y., Liu, H. C., Wang, J. H., & Shi, H. (2022). New model for occupational health and safety risk assessment based on Fermatean fuzzy linguistic sets and CoCoSo approach. Applied Soft Computing, 126, 109262. https://doi.org/10.1016/j.asoc.2022.109262
  16. Coskun, C., Dikmen, I., & Birgonul, M. T. (2023). Sustainability risk assessment in mega construction projects. Built Environment Project and Asset Management. https://doi.org/10.1108/BEPAM-10-2022-0153
  17. Durdyev, S., Mohandes, S. R., Tokbolat, S., Sadeghi, H., & Zayed, T. (2022). Examining the OHS of green building construction projects: A hybrid fuzzy-based approach. Journal of Cleaner Production, 338, 130590. https://doi.org/10.1016/j.jclepro.2022.130590
  18. El-Sayegh, S. M., Manjikian, S., Ibrahim, A., Abouelyousr, A., & Jabbour, R. (2021). Risk identification and assessment in sustainable construction projects in the UAE. International Journal of Construction Management, 21(4), 327-336. https://doi.org/10.1080/‌2018.1536963.
  19. Fung, I. W., Tam, V. W., Lo, T. Y., & Lu, L. L. (2010). Developing a risk assessment model for construction safety. International Journal of Project Management, 28(6), 593-600. https://doi.org/10.1016/‌ijproman.2009.09.006.
  20. Gul, M. (2018). A review of occupational health and safety risk assessment approaches based on multi-criteria decision-making methods and their fuzzy versions. Human and ecological risk assessment: an international journal, 24(7), 1723-1760. https://doi.org/10.1080/10807039.2018.1424531.
  21. Gunduz, M., & Laitinen, H. (2018). Construction safety risk assessment with introduced control levels. Journal of Civil Engineering and Management, 24(1), 11-18. http://dx.doi.org/10.3846/jcem.2018.284.
  22. Guo, J., Lin, Z., Zu, L., & Chen, J. (2019). Failure modes and effects analysis for CO2 transmission pipelines using a hesitant fuzzy VIKOR method. Soft computing, 23(20), 10321-10338. https://doi.org/10.1007‌/s00500-018-3583-1.
  23. Gupta, H. (2018). Assessing organizations performance on the basis of GHRM practices using BWM and Fuzzy TOPSIS. Journal of environmental management, Vol. 226, pp. 201-216. https://doi.org/10.1016/‌jenvman.2018.08.005.
  24. Gürcanli, G. E., & Müngen, U. (2009). An occupational safety risk analysis method at construction sites using fuzzy sets. International Journal of Industrial Ergonomics, 39(2), 371-387. https://doi.org/10.1016/j.ergon.2008.10.006.
  25. Hwang, B. G., Shan, M., & Phuah, S. L. (2018). Safety in green building construction projects in Singapore: Performance, critical issues, and improvement solutions. KSCE Journal of Civil Engineering, 22(2), 447-458. https://doi.org/10.1007/s12205-017-1961-3.
  26. Jebelli, H., Ahn, C. R., & Stentz, T. L. (2016). Fall risk analysis of construction workers using inertial measurement units: Validating the usefulness of the postural stability metrics in construction. Safety science, 84, 161-170. https://doi.org/10.1016/j.ssci.2015.12.012.
  27. Jeong, G., Kim, H., Lee, H. S., Park, M., & Hyun, H. (2022). Analysis of safety risk factors of modular construction to identify accident trends. Journal of Asian Architecture and Building Engineering, 21(3), 1040-1052. https://doi.org/10.1080/13467581.2021.1877141.
  28. Khan, M. W., Ali, Y., De Felice, F., & Petrillo, A. (2019). Occupational health and safety in construction industry in Pakistan using modified-SIRA method. Safety science, 118, 109-118. https://doi.org/10.1016/j.ssci.2019.05.001.
  29. Li, J., Zuo, J., Cai, H., & Zillante, G. (2018). Construction waste reduction behavior of contractor employees: An extended theory of planned behavior model approach. Journal of cleaner production, 172, 1399-1408. https://doi.org/10.1016/j.jclepro.2017.10.138.
  30. Liu, R., Hou, L. X., Liu, H. C., & Lin, W. (2020). Occupational health and safety risk assessment using an integrated SWARA-MABAC model under bipolar fuzzy environment. Computational and Applied Mathematics, 39(4), 1-17. https://doi.org/10.1007/s40314-020-01311-7.
  31. Liu, R., Liu, H. C., Shi, H., & Gu, X. (2023). Occupational health and safety risk assessment: A systematic literature review of models, methods, and applications. Safety science, 160, 106050. https://doi.org/10.1016/j.ssci.2022.106050
  32. Luo, M., Wu, L., Zhou, K., & Zhang, H. (2019). Multi-criteria decision making method based on the single valued neutrosophic sets. Journal of Intelligent & Fuzzy Systems, 37(2), 2403-2417. http://dx.doi.org/10.3233/JIFS-182723.
  33. Mohammadfam, I., Kamalinia, M., Momeni, M., Golmohammadi, R., Hamidi, Y., & Soltanian, A. (2017). Evaluation of the quality of occupational health and safety management systems based on key performance indicators in certified organizations. Safety and health at work, 8(2), 156-161. https://doi.org/10.1016/j.shaw.2016.09.001.
  34. Mohandes, S. R., & Zhang, X. (2021). Developing a Holistic Occupational Health and Safety risk assessment model: An application to a case of sustainable construction project. Journal of Cleaner Production, 291, 125934. https://doi.org/10.1016/j.jclepro.2021.125934.
  35. Murè, S., Comberti, L., & Demichela, M. (2017). How harsh work environments affect the occupational accident phenomenology? Risk assessment and decision making optimisation. Safety science, 95, 159-170. https://doi.org/10.1016/j.ssci.2017.01.004.
  36. Nawaz, W., Linke, P., & Koҫ, M. (2019). Safety and sustainability nexus: A review and appraisal. Journal of Cleaner Production, 216, 74-87. http://dx.doi.org/10.1016/j.jclepro.2019.01.167.
  37. Pinto, A. (2014). QRAM a Qualitative Occupational Safety Risk Assessment Model for the construction industry that incorporate uncertainties by the use of fuzzy sets. Safety Science, 63, 57-76. https://doi.org/‌1016/‌j.ssci.2013.10.019.
  38. Raviv, G., Shapira, A., & Fishbain, B. (2017). AHP-based analysis of the risk potential of safety incidents: Case study of cranes in the construction industry. Safety science, 91, 298-309. https://doi.org/10.1016/j.ssci.2016.08.027.
  39. Rezaei, J. (2016). Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega, 64, 126-130. https://doi.org/‌1016/j.omega.2015.12.001.
  40. Rosenbaum, S., Toledo, M., & González, V. (2014). Improving environmental and production performance in construction projects using value-stream mapping: Case study. Journal of Construction Engineering and Management, 140(2), 04013045. http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0000793.
  41. Rowlinson, S., & Jia, Y. A. (2015). Construction accident causality: an institutional analysis of heat illness incidents on site. Safety science, 78, 179-189. https://doi.org/10.1016/j.ssci.2015.04.021.
  42. Saeed, B. B., Afsar, B., Hafeez, S., Khan, I., Tahir, M., and Afridi, M. A. (2019). Promoting employee's proenvironmental behavior through green human resource management practices. Corporate Social Responsibility and Environmental Management, Vol. 26, No. 2, pp. 424-438. https://doi.org/10.1002/csr.1694.
  43. Smarandache, F. (1998). Neutrosophy: neutrosophic probability, set, and logic: analytic synthesis & synthetic analysis. https://books.google.com/books?id=LgEZAQAAIAAJ&printsec=front_cover
  44. Sui, Y., Ding, R., & Wang, H. (2020). A novel approach for occupational health and safety and environment risk assessment for nuclear power plant construction project. Journal of Cleaner Production, 258, 120945. https://doi.org/10.1016/j.jclepro.2020.120945.
  45. Tong, R., Cheng, M., Zhang, L., Liu, M., Yang, X., Li, X., & Yin, W. (2018). The construction dust-induced occupational health risk using Monte-Carlo simulation. Journal of cleaner production, 184, 598-608. https://doi.org/10.1016/j.jclepro.2018.02.286.
  46. Wang, J., Zou, P. X., & Li, P. P. (2016). Critical factors and paths influencing construction workers’ safety risk tolerances. Accident analysis & prevention, 93, 267-279. https://doi.org/10.1016/j.aap.2015.11.027.
  47. Yan, H., Gao, C., Elzarka, H., Mostafa, K., & Tang, W. (2019). Risk assessment for construction of urban rail transit projects. Safety science, 118, 583-594. http://dx.doi.org/10.1016/j.ssci.2019.05.042.
  48. Yucesan, M., & Gul, M. (2021). Failure prioritization and control using the neutrosophic best and worst method. Granular Computing, 6(2), 435-449. https://doi.org/10.1007/s41066-019-00206-1.
  49. Zhang, X., & Mohandes, S. R. (2020). Occupational Health and Safety in green building construction projects: A holistic Z-numbers-based risk management framework. Journal of Cleaner Production, 275, 122788. https://doi.org/10.1016/j.jclepro.2020.122788.
  50. Zhou, Z., Irizarry, J., & Lu, Y. (2018). A multidimensional framework for unmanned aerial system applications in construction project management. Journal of management in engineering, 34(3), 04018004. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000597