نوع مقاله : مقاله پژوهشی
نویسندگان
1 استاد، گروه مهندسی صنایع، دانشکده مهندسی، دانشگاه الزهرا، تهران، ایران
2 کارشناسی، گروه مهندسی صنایع، دانشکده مهندسی، دانشگاه الزهرا، تهران، ایران
چکیده
ارزیابی و انتخاب تامین کنندگان یکی از موضوعات مهم در مدیریت زنجیره تامین است. این مسئله به دلیل تاثیرگذاری پارامترهای مبهم و نادقیق تبدیل به یکی از مسائل نامتقن در زنجیره تامین شده است و تاکنون ابزارهای مختلفی در بعد وزن دهی به معیارها و تعیین امتیازات تامین کنندگان از هر معیار پیشنهاد شده است. از طرفی اعداد یا مجموعه های نوتروسوفیک از ابزارهای نوین برای مواجهه با عدم قطعیت توام با اطلاعات مبهم و ناسازگار است که در سالهای اخیر معرفی شده است. منطق نوتروسوفیک به عنوان جامع ترین نوع منطق غیرکلاسیک برای مواجه با عدم قطعیت و نقصان اطلاعات در فرآیند تصمیم گیری بعد از منطق فازی و فازی شهودی معرفی شده است به نحوی که در این منطق درجه عضویت و عدم عضویت و درجه تردید بر خلاف منطق فازی شهودی، به طور مستقل از هم بین صفر تا یک تعیین می شود. در این تحقیق به منظور شناسایی و وزن دهی به معیارهای ارزیابی تامین کنندگان، تکنیک گسترش عملکرد کیفی در فضای نوتروسوفیک توسعه داده شده است. همچنین از رویکرد ارزیابی مبتنی بر فاصله از متوسط راحل ها در شرایط نوتروسوفیک به منظور انتخاب تامین کنندگان برتر به عنوان یک رویکرد جدید استفاده می شود. به منظور درک بهتر فرایند ترکیبی ارائه شده، یک مطالعه عددی در صنعت دارو ارائه شده است. نتایج نشان می دهد که دو معیار موقعیت جغرافیایی تامین کننده و سالهای تجربه در صنعت به عنوان برترین معیارهای ارزیابی بوده و تامین کننده دوم بهترین تامین کننده می باشد.
کلیدواژهها
- مدیریت زنجیره تامین
- ارزیابی و انتخاب تامین کننده
- گسترش عملکرد کیفی
- ارزیابی مبتنی بر فاصله از متوسط راحل ها
- اعداد نوتروسوفیک
موضوعات
عنوان مقاله [English]
Supplier Selection Problem Using Combined Approaches of Neutrosophic-Based Quality Function Deployment and EDAS
نویسندگان [English]
- Mehdi Seifbarghy 1
- Morvarid Yousefi 2
1 Professor, Department of Industrial Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran
2 BSc, Department of Industrial Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran
چکیده [English]
The evaluation and selection of suppliers is a crucial issue in supply chain management. This problem has grown increasingly uncertain due to the influence of imprecise parameters, and various tools have been proposed for weighting criteria and evaluating supplier scores for each criterion. Neutrosophic numbers, a modern tool for handling uncertainty, ambiguity, and inconsistency, are introduced to tackle such challenges. As the most comprehensive form of non-classical logic after fuzzy and intuitionistic fuzzy logic, Neutrosophic logic assigns degrees of membership, non-membership, and hesitation independently between zero and one. In this research, the quality function deployment (QFD) technique is developed in a Neutrosophic environment to identify and weigh supplier evaluation criteria. Additionally, the Neutrosophic EDAS approach is proposed for selecting top suppliers. A numerical study of the pharmaceutical industry demonstrates that geographical location and supplier experience are the two most critical criteria, and the second supplier is chosen as the best.
کلیدواژهها [English]
- Supply Chain Management
- Supplier Evaluation and Selection
- Quality Function Deployment
- EDAS
- Neutrosophic Numbers
- . اسلامی، اسفندیار، (1397). نظریه مجموعههای فازی و تعمیمهای آن. سیستمهای فازی و کاربردها، سال اول، شماره اول، صص 1-22.
- 2.Abdel-Basset, M., Manogaran, G., Gamal, A., & Smarandache, F. (2019). A group decision making framework based on neutrosophic TOPSIS approach for smart medical device selection. Journal of medical systems, 43, 1-13. https://doi.org/10.1007/s10916-019-1156-1.
- 3.Adalı, E.A., Öztaş, T., Özçil, A., Öztaş, G.Z. & Tuş, A. (2023). A new multi-criteria decision-making method under neutrosophic environment: ARAS method with single valued neutrosophic numbers. International Journal of Information Technology and Decision making, 22(1), 57-87. https://doi.org/10.1142/S0219622022500456.
- 4.Akao, Y., & Mazur, G.H. (2003). The leading edge in QFD: past, present and future, International Journal of Quality and Reliability Management, 20(1), 20–35. https://doi.org/10.1108/02656710310453791.
- 5.Aliakbari, A., & Seifbarghy, M. (211). A supplier selection model for social responsible supply chain. Journal of Optimization in Industrial Engineering, 4(28), 41-53.
- 6.Alinezad, A., Seif, A., & Esfandiari, N. (2013). Supplier evaluation and selection with QFD and FAHP in a pharmaceutical company, International Journal of Advanced Manufacturing Technology, 68, 355–364. https://doi.org/10.1007/s00170-013-4733-3.
- 7.Alzahrani, F.A., Ghorui, N., Gazi, K.H., Giri, B.C., Ghosh, A., & Mondal, S.P. (2023). Optimal site selection for women university using neutrosophic multi-criteria decision making approach. Buildings, 13 (1), 152. https://doi.org/10.3390/buildings13010152.
- 8.Atanassov, K.T. (1986). Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, 20, 87-9.
- 9.Bevilacqua, M., Ciarapica, F.E., & Marchetti, B. (2012). Development and test of a new fuzzy-QFD approach for characterizing customers rating of extra virgin olive oil, Food Quality Preference, 24,75–84. https://doi.org/10.1016/j.foodqual.2011.09.005.
- 10.Chan, F., Kumar, N., Kumar Tiwari, M., Lau, H. C. W., & Choy, K. L. (2008). Global supplier selection: A fuzzy-AHP approach, International Journal of Production Research,46(14), 3825-3857. https://doi.org/10.1080/00207540600787200.
- 11.Chen, C.H. (2019). A New Multi-Criteria Assessment Model Combining GRA Techniques with Intuitionistic Fuzzy Entropy-Based TOPSIS Method for Sustainable Building Materials Supplier Selection, Sustainability, 11(8), 2265. https://doi.org/10.3390/su11082265.
- 12.De Boer, L., Labro, E., & Morlacchi, P. (2001). A review of methods supporting supplier selection, European Journal of Purchasing and Supply Management. 7, 75–89. https://doi.org/10.1016/S0969-7012(00)00028-9.
- 13.Deli, I., & Subas Y. (2014). Single valued neutrosophic numbers and their applications to multicriteria decision making problem. Neutrosophic Sets and Systems, 2(1), 1-13.
- 14.Dursun, M., & Şener, Z. (2014). An integrated DEMATEL-QFD model for medical supplier selection, world academy of science, engineering and technology, International Journal of Mechanical Aerospace Industrial Mechatronic Manufacturing Engineering, 8, 592–596.
- 15.Görçün, Ö.F., Aytekin, A., & Korucuk, S. (2023). Fresh food supplier selection for global retail chains via bipolar neutrosophic methodology. Journal of Cleaner Production, 419, 138156. https://doi.org/10.1016/j.jclepro.2023.138156.
- 16.Ha, S.H., & Krishnan, S.H. (2008). A hybrid approach to supplier selection for the maintenance of a competitive supply chain, Expert Systems with Applications. 34,1303–1311. https://doi.org/10.1016/j.eswa.2006.12.008.
- 17.Ho, W., Xu, W., & Dey, P.K. (2010). Multi-criteria decision making approaches for supplier evaluation and selection: A literature review, European Journal of Operational Research. 202, 16–24. https://doi.org/10.1016/j.ejor.2009.05.009.
- 18.Hwang, C.L. & Yoon, K. (1981) Multiple Attribute Decision Making: Methods and Applications, A State-of-the-Art Survey. Springer-Verlag.
- 19.Jadidi, O., Hong T.S., Firouzi, F. Yusuff, R.M., & Zulkifli, N. (2008). TOPSIS and fuzzy multi-objective model integration for supplier selection problem, in Journal of Achievements of Materials and Manufacturing Engineering.
- 20.Jovanović, B., & Delibašić, B. (2014). Application of integrated QFD and fuzzy AHP approach in selection of suppliers, Management Journal of Sustainable Business and Management Solutions in Emerging Economies, 19(2014/72), 25–35. https://doi.org/10.7595/management.fon.2014.0018.
- 21.Karsak, E.E., & Dursun, M. (2014). An integrated supplier selection methodology incorporating QFD and DEA with imprecise data, Expert Systems with Applications, 41, 6995– 7004. https://doi.org/10.1016/j.eswa.2014.06.020.
- 22.Keshavarz Ghorabaee, M., Zavadskas, E.K., Olfat, L., & Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS), Informatica, 26(3), 435-451. https://doi.org/10.15388/Informatica.2015.57.
- 23.Kilincci, O., & Onal, S.A. (2011). Fuzzy AHP approach for supplier selection in a washing machine company, Expert Systems with Applications, 38, 9656–9664. https://doi.org/10.1016/j.eswa.2011.01.159.
- 24.Kumaraswamy, A.H., Bhattacharya, A., Kumar, V., & Brady, M. (2011). An integrated QFD-TOPSIS methodology for supplier selection in SMEs, in: 2011 Third International Conference on Computational Intelligence, Modelling and Simulation, CIMSiM. pp. 271–276. https://doi.org/10.22105/riej.2020.213445.1110.
- 25.Lee, E.-K., Ha, S., & Kim, S.-K. (2001). Supplier selection and management system considering relationships in supply chain management, IEEE Trans. Engineering Management. 48, 307–318. https://doi.org/10.1109/17.946529.
- 26.Lee, Y.-T., Wu, W.-W., & Tzeng, G.-H. (2008). An effective decision-making method using a combined QFD and ANP approach, WSEAS Trans. Business Economics, 12, 541–551.
- 27.Menon, R., & Ravi, V. (2022). Using AHP-TOPSIS methodologies in the selection of sustainable suppliers in an electronics supply chain. Cleaner Materials, 5, 100130. https://doi.org/10.1016/j.clema.2022.100130.
- 28.Nabeeh, N. A., Smarandache, F., Abdel-Basset, M., El-Ghareeb, H. A., & Aboelfetouh, A. (2019). An integrated neutrosophic-TOPSIS approach and its application to personnel selection: A new trend in brain processing and analysis. IEEE Access,7, 29734-29744. https://doi.org/10.1109/ACCESS.2019.2899841.
- 29.Önüt, S., Soner Kara, S., & Isik, E. (2009). Long term supplier selection using a combined fuzzy MCDM approach: A case study for a telecommunication company, Expert Systems with Applications, 36, 3887–3895. https://doi.org/10.1016/j.eswa.2008.02.045.
- 30.Oroojeni Mohammad Javada, M., Darvishi, M., & Oroojeni Mohammad Javad, A. (2020). Green supplier selection for the steel industry using BWM and fuzzy TOPSIS: A case study of Khouzestan steel company. Sustainable Futures, 2, 100012. https://doi.org/10.1016/j.sftr.2020.100012.
- 31.Rajesh, G., & Malliga, P. (2013). Supplier selection based on AHP QFD methodology, Procedia Engineering, 64, 1283–1292. https://doi.org/10.1016/j.proeng.2013.09.209.
- 32.Saaty, T.L. (1988). What is the analytic hierarchy process? in: Mathematical Models for Decision Supported. Springer,109–121.
- 33.Smarandache, F. (2013). A unifying field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic set, Neutrosophic Probability and statistics, American research press, Rehoboth, Fourth Edition.
- 34.Tavana, M., Shaabani, A., Di caprio, D., & Amiri, M. (2021). An integrated and comprehensive fuzzy multicriteria model for supplier selection in digital supply chains, Sustainable Operations and Computers,2, Pages 149-169. https://doi.org/10.1016/j.susoc.2021.07.008.
- 35.Wang, Z., Cai, Q., & Wei, G. (2023). Modified TODIM method based on cumulative prospect theory with Type-2 neutrosophic number for green supplier selection. Engineering Applications of Artificial Intelligence, 126, Part B, 106843. https://doi.org/10.1016/j.engappai.2023.106843.
- 36.Yazdani, M., Ebadi Torkayesh, A., Stević, Ž., Chatterjee, P., Asgharieh Ahari, S., Hernandez, V.D. (2021). An interval valued neutrosophic decision-making structure for sustainable supplier selection. Expert Systems with Applications, 183, 115354. https://doi.org/10.1016/j.eswa.2021.115354.
- 37.Zadeh, L.A. (1965). Fuzzy sets, Information and Control, 8,3,338-353. http://dx.doi.org/10.1016/S0019-9958(65)90241-X.
- 38.Zouggari, A., & Benyoucef, L. (2012). Simulation based fuzzy TOPSIS approach for group multi-criteria supplier selection problem, Engineering Applications of Artificial Intelligence, 25, 507–519. https://doi.org/10.1016/j.engappai.2011.10.012.