نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه ریاضی کاربردی،دانشکده علوم پایه، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

2 استاد گروه ریاضی کاربردی،دانشکده علوم پایه، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران

3 استادیار گروه ریاضی کاربردی، دانشکده علوم پایه،واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

چکیده

در تکنولوژی تولید مطالعه اثر یک شاخص بر روی یک یا چند شاخص دیگر با حفظ کارایی، تحت عنوان نرخ حاشیه ای می توانند اطلاعات ارزنده ای را به منظور مدیریت بهتر سیستم در اختیار مدیران قرار دهند. در این مقاله هدف مطالعه تاثیر شاخص های معنادار بر هم و در ساختار دو مرحله ای خاص و با حضور خروجی های نامطلوب می باشد. در این مطالعه بر خلاف مطالعات پیشین تکنولوژی تولید در ساختار دو مرحله ای به دو زیر تکنولوژی افراز می شود و سپس با تمرکز بر مبحث کاربردی، ابتدا اثر ورودی مشخص از مرحله اول بر روی شاخص میانی سنجیده شده است و سپس با محاسبه تغییرات صورت پذیرفته در این شاخص که توسط مدل پیشنهادی محاسبه شده است به عنوان عامل انتقال اثر آن بر روی خروجی نهایی خاص سنجیده می شود. در این مقاله با تمرکز روی داده های جمع آوری شده از 21 نیروگاه برق استانی که متشکل از بخش های وابسته به هم "تولید" و "انتقال" می باشند، هر واحد ساختاری مشابه ساختار بیان شده دارند. با توجه به افراز تکنولوژی کل اثر افزایش یا کاهش مولفه انواع سوخت تحت عنوان ورودی مرحله اول بر روی جریان الکتریسیته گرفته شده و سپس تغییرات جریان الکتریسیته بر روی درآمد کل سیستم سنجیده می شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Marginal productivity in two – stage network processes in the presence of undesirable outputs

نویسندگان [English]

  • Maryam Sharifi 1
  • Sohrab Kordrostami 2
  • Leila Khoshandam 3

1 PhD student, Department of Applied Mathematics, Faculty of Basic Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran

2 Professor, Department of Applied Mathematics, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran

3 Assistant Professor, Department of Applied Mathematics, Faculty of Basic Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran

چکیده [English]

In production technology, studying the effect of an indicator on one or more other indicators while maintaining efficiency, named marginal rate, can provide valuable information to managers for better management of the system. In this paper, the aim is to study the effect of meaningful indicators on each other in a specific two-stage structure with undesirable outputs. In this study, production technology is divided into two sub-technologies in a two-stage structure, and then, focusing on the application issue, first, the effect of a specific input from the first stage on the intermediate indicator is measured, and then, by calculating the changes made in this indicator, its effect on the specific final output is measured as a transmission factor. In this paper, focusing on data collected from 21 provincial power plants consisting of interdependent "generation" and "transmission" sections, each unit has a similar structure to the stated structure. Considering the total technology distribution, the effect of increasing or decreasing the fuel type component is taken as the first-stage input on the electricity flow, and then the changes in electricity flow are measured on the total system revenue.
Introduction
In today’s world, one of the appropriate tools for measuring and evaluating productivity is data envelopment analysis (DEA). In classical DEA models, the main objective of the increase in output per unit cost is to increase the output, but in some processes with undesirable outputs, other outputs are produced as undesirable outputs. In DEA, different views have been expressed in addressing these outputs. The weak disposability of Kuosmanen (2005), one of the most common ways, is used in this study. In the traditional DEA approach, decision-making units were considered as black boxes. However, in the real world, we are faced with manufacturing processes that have two or more stages to produce final products with network structures. Therefore, network data envelopment analysis (NDEA) is introduced. The network models not only provide overall efficiency for the production processes but also provide the efficiency score for each individual stage. In production theory, calculating the effect of an index on another index can provide valuable information so that managers can access the desired performance by maintaining the efficiency and the exchange between the inputs and outputs. Due to inherent complexity in most of the manufacturing processes, a decision parameter cannot be changed without affecting one or more parameters. Exchanges between inputs and outputs are known as marginal rates and marginal productivity in economics and partial derivatives in mathematics. Although in DEA models, the ratio of optimal coefficients provides this information, due to the nature of the linear segmentation of the border and also due to the multiplicity of these coefficients, the marginal rates will not be unique. Researchers have provided solutions in this field, which are discussed in the following sections. In general, by knowing these rates, valuable suggestions can be made to the managers in order to improve the overall performance of the system. As far as we know, very little research has been done in the field of studying marginal rates and marginal productivity in two-stage production networks with the presence of unfavorable factors. Therefore, this topic is still seen as a research gap in the DEA literature. In this paper, a four-stage process is presented to obtain marginal productivity in a two-stage system in the presence of unfavorable factors. For this purpose, an efficiency measurement model has been proposed to evaluate the efficiency score of two-stage systems in the presence of undesirable outputs. Then, with the idea of Asmild’s method, which was used in 2006 to calculate the right and left marginal rates, the marginal productivity was calculated in the proposed network.
Methodology
To show the practical nature of the proposed method, the model and process were analyzed on the collected data related to 21 provincial power plants of the country. The electricity generation process in each power plant is a two-stage process, which includes the production and transmission sectors, respectively. The flow of electricity was used as an intermediate product in the production sector with an output nature and in the transmission sector with an input nature. Personnel costs and types of fuel, respectively, are defined as the first and second inputs, and pollutants as the undesirable output of the production sector. In the second stage, i.e., the transmission part, the expected outputs including the total income and the covered area have been considered. In the study of production processes, the effect of changing one indicator on one or more other indicators can provide managers with valuable information. Such exchanges between inputs or outputs are known as marginal rates and marginal productivity. Therefore, the estimation of such rates is a significant issue.
Results
Power plants of each country are considered as one of the most important pillars of growth and development of the country and have a significant impact on increasing the welfare of people. In this paper, 21 provincial power stations have been studied.
In this way, by considering a two-stage structure and with undesirable outputs, the effect of an index on the intermediate product and then the effect of this change on the final output of the system has been studied. For this purpose, during a four-step process, marginal productivity has been calculated for each component of the production process. As can be seen from the results, in a two-step process, any change in the first component can be transferred to the second component through the intermediate product. In this study, the aim is to measure the amount of personnel cost changes on the total income of power plants.
Conclusion
In production theory, studying the effect of one indicator on one or more other indicators is important as long as we are addressing multi-stage processes. Such exchanges in economics are known as marginal rate and marginal productivity. In this paper, focusing on 21 provincial power plants that have two-stage structures and undesirable outputs, for the first time, through a four-stage process, the effect of changes in the input indicators on the intermediate index and then its effect on the outputs is addressed. According to this study, any increase or decrease in the inputs of the first component of the two-stage network can be transferred to the final product through changes in the intermediate index, so it is possible to manage the final outputs of the entire system by changing the inputs of the first component and maintaining the efficiency. In order to provide suggestions for future studies, it is recommended to study networks with more components and a combination of series and parallel modes. Also, the studied network should be analyzed in other industries with a similar structure.

کلیدواژه‌ها [English]

  • data envelopment analysis
  • two-stage structure
  • marginal productivity
  • undesirable output
  1. . امانی، ناصر و باقرزاده ولمی، هادی. (1397). ارزیابی کارایی شرکت‌های برق منطقه‌ای ایران با تحلیل پوششی داده‌های شبکه‌ای: بر اساس تبدیل ساختارها به یک ساختار یکنواخت تصمیم‍گیری و تحقیق در عملیات، 3(3)، 249-280.
  2. پورعلیزاده، مژگان، امیرتیموری، علیرضا، و واعظ قاسمی، محسن. (1400). یک مدل DEA برای ارزیابی اجرای زنجیره تأمین پایدار با حضور خروجی‌های نامطلوب و شاخص‌های دو نقش ورودی و خروجی: کاربردی از صنعت برق. مطالعات مدیریت صنعتی، 19(62)، -139- 192.
  3. خسروی، محمدرضا، شاهرودی، کامبیز، امیرتیموری، علیرضا، و دل افروز، نرگس. (1401). طراحی مدل تحلیلی ـ ریاضی به منظور سنجش کارایی زنجیره تولید، انتقال و توزیع صنعت برق ایران: رویکرد تحلیل پوششی داده‌های شبکه‌ای با خروجی نامطلوب. مدیریت صنعتی، 14(2)، 220-249.
  4. فلاحی، محمدعلی واحمدی، وحیده. (1384). ارزیابی کارایی شرکتهای توزیع برق درایران. تحقیقات اقتصادی، (71)، 297-320.
  5. Amirteimoori, A., Despotis, D., Kordrostami, S., Azizi. H. (2016). Additive models for network data Envelopment analysis in the presence of shared resources. Transportation Research part D: Transport and Environment, 48, 411-424. https:/‌/‌doi.org/‌10.1016/‌j.trd.2015.12.016
  6. Amirteimoori, A., Kordrostami, S., & Sarparast, M. (2006). Modeling undesirable factors in data envelopment analysis. Applied Mathematics Computation, 180(2), 444-452. https:/‌/‌doi.org/‌10.1016/‌j.amc.2005.12.029
  7. Amirteimoori, A., Charles, V., Mehdizadeh, S. (2024). Stochastic data envelopment analysis in the presence of undesirable outputs: An application to the power industry. OR Spectrum. https:/‌/‌doi.org/‌10.1007/‌s00291-024-00794-8
  8. Amirteimoori, A., Kou, G. (2024). Technical efficiency and managerial ability in two-stage production processes with undesirable products: A case on Asian banks. Socio-Economic Planning Sciences (96), 102081. https:/‌/‌doi.org/‌10.1016/‌j.seps.2024.102081
  9. An, Y., Zhai, X., (2020). SVR-DEA model of carbon tax pricing for China's thermal power industry. Science of The Total Environment 734, 139438. https:/‌/‌doi.org/‌10.1016/‌j.scitotenv.2020.139438
  10. An, Q., Chen, s., Wang, P. (2025). Fixed-sum data envelopment analysis efficiency evaluation with network parallel structure under decentralized and centralized scenarios. Expert Systems with Applications. https:/‌/‌doi.org/‌10.1016/‌j.eswa.2024.125904
  11. Asmild, M., Paradi, J. C., & Reese, D. N. (2006). Theoretical perspectives of trade-off analysis using DEA. Omega, 34(4), 337-343. https:/‌/‌doi.org/‌10.1016/‌j.omega.2004.11.002
  12. Banker, R.D., Charnes, A., Cooper, W.W. (1984). Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science 30, 1078-1092. https:/‌/‌doi.org/‌10.1287/‌mnsc.30.9.1078
  13. Charnes, A., Cooper, W.W., Rhodes, E., 1978. "Measuring the Efficiency of DecisionMaking Units. European Journal of Operational Research 2, 429-444. https:/‌/‌doi.org/‌10.1016/‌0377-2217(78)90138-8
  14. Cooper, W.W., Park, K.S., Ciurana, JTP. (2000). Marginal rates and elasticities of substitution with additive models in DEA. Journal of Productivity Analysis, 13:105-23.https:/‌/‌doi.org/‌10.1023/‌A:1007896629828
  15. Dar, K. H., & Raina, S. H. (2024). Public healthcare efficiency in India: Estimates and determinants using two stage DEA approach. Evaluation and Program Planning, 106, 102472. https:/‌/‌doi.org/‌10.1016/‌j.evalprogplan.2024.102472
  16. Färe, R., Grosskopf., 2009. “A Comment on weak disposability in nonparametric production analysis”. American Journal of Agricultural Economic, 91,535-8. https:/‌/‌doi.org/‌10.1111/‌j.1467-8276.2008.01237.x
  17. Färe, R., Grosskopf, S. (2003). Non-parametric productivity analysis with undesirable outputs: Comment. American Journal of Agricultural Economics, 85, 1070-1074. https:/‌/‌www.jstor.org/‌stable/‌1244786 https:/‌/‌doi.org/‌10.1111/‌1467-8276.00510
  18. Faozen, F., Sandy, S. R. O. (2024). Performance management: A new approach in performance management. In Human Resource Management-An Update. IntechOpen. https:/‌/‌ doi.org/‌10.5772/‌intechopen.1002501
  19. Farrell, M.J. (1957), The Measurement of Productive Efficiency. Journal of the Royal Statistical Society, Series A 120, 253-290. https:/‌/‌doi.org/‌10.2307/‌2343100
  20. Fukuyama, H., Weber, W. L., (2010). A slacks-based inefficiency measure for a two-stage system with bad outputs. Omega, 38, 398–409. https:/‌/‌doi.org/‌10.1016/‌j.omega.2009.10.006
  21. Gao, X., Ye, Y., Su, W., Chen, L., (2023). Assessing the comprehensive importance of power grid nodes based on DEA. International journal of critical infrastructure protection 42, 100614. https:/‌/‌doi.org/‌10.1016/‌j.ijcip.2023.100614
  22. Hailu, A., & Veeman TS. (2001). Non-parametric productivity analysis with undesirable outputs: An application to the Canadian pulp and paper industry. American Journal of Agricultural Economics, 83(3), 605-616. https:/‌/‌doi.org/‌10.1111/‌0002-9092.00181
  23. Hadi, A., Amirteimoori, A., Kordrostami, S., Mehrabian, S. (2024). An efficiency score unification method in data envelopment analysis using slack-based models with application in banking. Decision Analytic Journal, (14), 100541. https:/‌/‌doi.org/‌10.1016/‌j.dajour.2024.100541
  24. Huang, Z., Li, S.X., Rousseau, J.J. (1997). Determining rates of change in data envelopment analysis. Journal of the operational Research Society 48,591-593. https:/‌/‌doi.org/‌10.1057/‌palgrave.jors.2600393
  25. Jahani Sayyad Noveiri, M., Kordrostami, S. (2024). Efficiency Appraisal and Classification of Flexible Random Factors. In Analytical Decision Making and Data Envelopment Analysis: Advances and Challenges. Springer Nature Singapore, pp. 103-123. https:/‌/‌ doi.org/‌10.1007/‌978-981-97-6972-8-5
  26. Jahanshahloo, G., Hadi Vencheh, A., Foroughi, A., & Kazemi Matin, R. (2004). Inputs/‌outputs estimation in DEA when some factors are undesirable. Applied Mathematics and Computation, 156(1), 19-32. https:/‌/‌doi.org/‌10.1016/‌S0096-3003(03)00814-2
  27. Kao, C. (2009). Efficiency decomposition in network data envelopment analysis: A relational model. European Journal of Operational Research, 192, 949-962. https:/‌/‌doi.org/‌10.1016/‌j.ejor.2007.10.008
  28. Kao, Ch. (2014). Network data envelopment analysis: A review. European Journal of Operational Research, 239, 1-16. https:/‌/‌doi.org/‌10.1016/‌j.ejor.2014.02.039
  29. Kao, C., Hwang, S-N. (2008). Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. European Journal of Operational Research, 185(1), 418-429. https:/‌/‌doi.org/‌10.1016/‌j.ejor.2006.11.041
  30. Kao, Ch. (2024). Maximum slacks-based measure of efficiency in network data envelopment analysis: A case of garment manufacturing, Omega. https:/‌/‌doi.org/‌10.1016/‌j.omega.2023.102989
  31. Khoshandam, L., Amirteimoori, A., Kazemi Matin, R., 2014. Marginal rates of Substitution in the Presence of non-discretionary factors: A data envelopment analysis approach. Measurement, 58,409-415. https:/‌/‌doi.org/‌10.1016/‌j.measurement.2014.09.019
  32. Khoshandam, L., Kazemi Matin, R., & Amirteimoori, A. (2015). Marginal rates of substitution in data envelopment analysis with undesirable outputs: A directional approach. Measurement, 68, 49-57. https:/‌/‌doi.org/‌10.1016/‌j.measurement.2015.02.020
  33. Kordrostami, S., Amirteimoori, A. (2005). Undesirable factors in multi-component performance measurement. Applied Mathematics and Computation, 171,721-729. https:/‌/‌doi.org/‌10.1016/‌j.amc.2005.01.081
  34. Kuosmanen, T., (2005). Weak disposability in nonparametric production analysis with undesirable outputs. American Journal of Agricultural Economics, 87, 1077-1082. https:/‌/‌doi.org/‌10.1111/‌j.1467-8276.2005.00788.x
  35. Li, L., Liu, J., Yang, J., Ma, X., Yu, H. (2024). Investigating the efficiency of container terminals through a network DEA cross efficiency approach. Research in Transportation Business & Management Volume 53, 101107. https:/‌/‌doi.org/‌10.1016/‌j.rtbm.2024.101107
  36. Liu, Y., Mai, L., Huang, F., Zeng, Z.  (2024). Regional healthcare resource allocation and decision-making: Evaluating the effectiveness of the three-stage super-efficiency DEA model. Hilyon, Volume 10, Issue 23e40312. https:/‌/‌doi.org/‌10.1016/‌j.heliyon.2024.e40312
  37. Lozano, S., Gutiérrez, E., & Moreno, P. (2013). Network DEA approach to airports performance assessment considering undesirable outputs. Applied Mathematical Modelling, 37(4), 1665-1676. https:/‌/‌doi.org/‌10.1016/‌j.apm.2012.04.041
  38. Maghbouli, M., Amirteimoori, A., & Kordrostami, S. (2014). Two-stage network structures with undesirable outputs: A DEA based approach. Measurement, 48, 109-118. https:/‌/‌doi.org/‌10.1016/‌j.measurement.2013.10.032
  39. Mahboubi, M., Kordrostami, S., Amirteimoori, A., Chane kanafi, A. (2021). Estimating Marginal Rate of Substitution in two-stage processes with undesirable factors. Iranian Journal of Management Studies (IJMS), 14(2): 419-436. 10.22059/‌ijms.2020.298251.673968
  40. Meng, M., Pang, T., Li, X., (2023). Assessing the total factor productivity of China’s thermal power industry using a network DEA approach with cross-efficiency. Energy Reports Pages 5196-5205. https:/‌/‌doi.org/‌10.1016/‌j.egyr.2023.04.050
  41. Omrani, H., Yang, Z., Karbasian, A., Teplova, T., (2023). Combination of top-down and bottom-up DEA models using PCA: A two-stage network DEA with shared input and undesirable output for evaluation of the road transport sector. Socio-Economic Planning Sciences 89, 101706. https:/‌/‌doi.org/‌10.1016/‌j.seps.2023.101706
  42. Rosen, D., Schaffnit, C., Paradi, JC. (1998). Marginal rates and two- dimensional level curves in DEA. Journal of Productivity Analysis. 9:205-32. https:/‌/‌doi.org/‌10.1023/‌A:1018382904489
  43. Seiford, L.M., & Zhu, J. (2002). Modeling undesirable factors in efficiency evaluation. European Journal of Operational Research, 142(1), 16-20. https:/‌/‌doi.org/‌10.1016/‌S0377-2217(01)00293-4
  44. Shephard, R.W. 1970. Theory of cost Production Function. Princeton University Press.
  45. Shi, X., Emrouznejad, A., Yu, w. (2021). Overall efficiency of operational process with undesirable outputs containing both series and parallel processes: A SBM network DEA model. Expert Systems with Applications 178, 115062. https:/‌/‌doi.org/‌10.1016/‌j.eswa.2021.115062
  46. Sueyoshi, T., Goto, M. (2012). Returns to Scale, damages to Scale, marginal rate of transformation and rate of Substitution in DEA environmental assessment. Energy Econ 34,905-917. https:/‌/‌doi.org/‌10.1016/‌j.eneco.2012.04.003
  47. Wei, X., Zhao, R., (2024). Evaluation and spatial convergence of carbon emission reduction efficiency in China's power industry: Based on a three-stage DEA model with game cross-efficiency. Science of The Total Environment 906, 167851. https:/‌/‌doi.org/‌10.1016/‌j.scitotenv.2023.167851
  48. Yang, Z., Omrani, H., Imanira, R. (2024). Assessing airline efficiency with a network DEA model: A Z-number approach with shared resources, undesirable outputs, and negative data. Socio-Economic Planning Sciences. https:/‌/‌doi.org/‌10.1016/‌j.seps.2024.102044
  49. Yeh, L.T. (2025). Measuring the effects of sediment variation and evaporation loss on the overall operational efficiency of hydropower systems: A robust network data envelopment analysis model, Renewable Energy. https:/‌/‌doi.org/‌10.1016/‌j.renene.2025.122488
  50. Zhang, Ch., Wang, Z., Su, W., Dalia, S., (2024). Differentiated power rationing or seasonal power price? Optimal power allocation solution for Chinese industrial enterprises based on the CSW-DEA model. Applied Energy 353, 122150. https:/‌/‌doi.org/‌10.1016/‌j.apenergy.2023.122150