نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیئت علمی دانشگاه گرمسار

2 فارغ التحصیل مقطع کارشناسی ارشد از دانشگاه علوم و فنون مازندران

چکیده

زنجیره تأمین شبکه‌ای متشکل از چندین بخش و روابط میان آن‌هاست. برای تحقق بهبود مداوم زنجیره تأمین، لازم است عملکرد زنجیره تأمین به طور مستمر ارزیابی گردد. یکی از نکات مهم در ارزیابی عملکرد، شناسایی نقاط ضعف زیرواحدها، درنظر گرفتن روابط میان واحدها در مدیریت سیستم و ایجاد تعادل میان بخش‌هاست. در این مقاله، روش تحلیل پوششی داده‌های شبکه‌ای برای ارزیابی عملکرد مورد استفاده قرار گرفته است. شناسایی واحدهای ناکارا در زنجیره تأمین و بهبود عملکرد آن‌ها دارای اهمیت زیادی است. از آنجایی‌که زنجیره تأمین از واحدهای مختلفی تشکیل شده، بهبود همزمان چند واحد غیرممکن است. از اینرو تعیین اولویت برای بهبود واحدها ضروری می‌باشد. بعلاوه انتخاب واحدهای الگو، برای ایده گرفتن در مورد چگونگی بهبود واحدهای ناکارا دارای اهمیت است. بنابراین، در این مقاله، با استفاده از داده‌های فازی، یک روش سیستماتیک برای الگوبرداری زنجیره تأمین معرفی می‌شود، که علاوه بر ارزیابی عملکرد کل زنجیره تأمین و تعیین واحدهای تصمیم‌گیری کارا و ناکارا، کارایی هریک از بخش‌های زنجیره تأمین را نیز محاسبه می‌‌کند. ما از این روش برای ارزیابی عملکرد زنجیره تأمین لوله‌های پلی‌اتیلنی استفاده می‌کنیم و به این ترتیب ارتباطات و فرآیندهای بخش‌های داخلی زنجیره تأمین آنرا بررسی می‌کنیم. در پایان با استفاده از روش الگوبرداری، اولویت بهبود برای سطوح مختلف زنجیره تأمین تعیین می‌گردد.

کلیدواژه‌ها

عنوان مقاله [English]

Performance Evaluation of Supply Chains of Polyethylene Pipes Using Fuzzy Network Data Envelopment Analysis

نویسندگان [English]

  • Saber Shiripour 1
  • Ameneh Adib 2

چکیده [English]

Supply chain is a network consists of several parts and their inter-relationships. To achieve continuous improvement in supply chain, it is necessary to continually evaluate supply chain performance. One of the important points in evaluating the performance, identify weaknesses subunits, considering the relations between the units in system management and balance between the sectors. In this paper, Network Data Envelopment Analysis technique is used for performance evaluation. Identification of inefficient units in the supply chain and improve their performance is of utmost importance. Since the supply chain is made up of different units, improving several unit is impossible. So, setting priorities is necessary to improve the unit. In addition, the selection of Pattern units is important to get an idea on how to improve inefficient units. So, in this work, using Fuzzy Data, a systematic method is defined for benchmarking supply chain, which in addition to evaluating the performance of the entire supply chain and determine efficient and inefficient decision making units, the efficiency of each of the parts of the supply chain is also calculated. This method is used for performance evaluation of the supply chains of Polyethylene pipes and so the communications and the processes of internal wards of their supply chain is reviewed. In the end, using benchmarking technique, improvement priorities are determined for different levels of the supply chain.

کلیدواژه‌ها [English]

  • Performance evaluation
  • Fuzzy Network Data Envelopment Analysis
  • Benchmarking
  • Polyethylene pipes
[1] خواجوی، ش، سلیمی فرد، ع و ربیعه، م، ”کاربرد تحلیل پوششی داده­ها در تعیین پرتفویی از کاراترین شرکت­های پذیرفته شده در بورس اوراق بهادار تهران“،مجله علوم اجتماعی و انسانی دانشگاه شیراز، دوره بیست و دوم، شماره دوم،  1384.
[2] باقرزاده، ف،”ارائه یک چارچوب مناسب برای اندازه‌گیری عملکرد زنجیره تأمین“، 1387.
[3] طحاری مهرجردی، م.ح، مروتی شریف آبادی، ع، بابایی میبدی، ح و زارعی محمود آبادی، م، ” کاربرد متدولوژی ترکیبی تحلیل پوششی داده‌ها و ماتریس درجه ترجیح در ارزیابی واحدهای تصمیم‌گیری با رویکرد فازی“، مجله تحقیق در عملیات و کاریردهای آن، دوره 32، شماره اول، بهار 1391.
[4]Cooper, W.W., Park, K.S., and Yu, G, “IDEA and ARIDEA: Models for dealing with imprecise data in DEA”, Management Science, 45, (1999), 597–607.
[5] Charnes, A., Cooper, W.W. and Rhodes, E, “Measuring the efficiency of decision making units”, European Journal of Operational Research, 2, (1978), 429-444.
[6] Banker, R. D. Charnes, A. and Cooper, W. W, “Some models for estimating technical and scale in inefficiencies in Data Envelopment Analysis”, Management Science, 9, (1984).
[7] Homburg, C, “Using data envelopment analysis to benchmark activities”, Int. J. Production Economics, 73, (2001), 51–58.
[8] Ebrahimnejad, A., Tavana, M., Hosseinzadeh Lotfi, F., Shahverdi, R. And Yousefpour, M, “A three-stage Data Envelopment Analysis model with application to banking industry”, Measurement, 49, (2014), 308–319.
[9] Chen, C. And Yan, H, “Network DEA model for supply chain performance evaluation”, European Journal of Operational Research, 213, (2011), 147–155.
[10] Fare, R. and Grosskopf, S, “Network DEA”, Socio Economics Planning Science, 4(1), (2000), 35–49.
[11] Chilingerian, J.A. and H.D. Sherman, “DEA and Primary Care Physician Report Cards: Deriving Preferred Practice Cones from Managed Care Service Concepts and Operating Strategies”, Ann Oper Res, 73, (1997), 35-66.
[12] Lawrence, Seiford, M. and Zhu, J, “Profitability and Marketability of the Top 55 U.S. Commercial Banks”, Management Science, 45, (1999), 1270-1288.
[13] Zhu, J, “Multi-factor performance measure model with an application to Fortune 500 companies”, European Journal of Operational Research, 123, (2000), 105-124.
[14] Kao, C. and Hwang, S.N., “Efficiency measurement for network systems: IT impact on firm performance”, Decision Support Systems, 48 (3), 2010, 437–446.
[15] Chen, Y. and Zhu, J, “Measuring Information Technology’s Indirect Impact on Firm Performance”, Information Technology and Management, 5, ( 2004), 9–22.
[16] Chena, Y., Liang, L., Yang, F. and Zhu, J, “Evaluation of information technology investment: a data envelopment analysis approach”, Computers & Operations Research, 33, (2006), 1368–1379.
[17] Liang, L. Yang, F. Cook, W.d. and Zhu, J, “DEA model for supply chain efficiency evaluation”, Ann. Oper. Res, 145 (1), (2006), 35–49.
[18] Cao, Q. and Hoffman, J. J. “A case study approach for developing a project performance evaluation system”, International Journal of Project Management, 29, (2011), 155–164.
[19] Li, Y., Chen, Y., Liang, L. and Xie, J, “DEA models for extended two-stage network structures”, Omega, 40, (2012), 611–618.
[20] Tone, K. and Tsutsui, M, “Network DEA: A slacks-based measure approach”, European Journal of Operational Research, 197, (2009), 243–252.
[21] Golany, B., Hackman, S.T. and Passy, U, “An efficiency measurement framework for multi-stage production systems”, Ann. Oper. Res, 145, (2006), 51–68.
[22] Lai, M.C., Huang, H.C. and Wang, W.K, “Designing a knowledge-based system for benchmarking: A DEA approach”, Knowledge-Based Systems, 24, (2011), 662–671.
[23] Tavana, M., Mirzagoltabar, H., Mirhedayatian, S.M., Farzipoor Saen, R. and Azadi, M, “A new network epsilon-based DEA model for supply chain performance evaluation”, Computers & Industrial Engineering, 66, (2013), 501–513.
[24] Mirhedayatian, S.M., Azadi, M. and Farzipoor Saen, R, “A novel network data envelopment analysis model for evaluating green supply chain management”, Int. J. Production Economics, 147, (2014), 544–554.
[25] الفت، ل، بامداد صوفی، ج، امیری، م و ابراهیم پور ازبری، م، " مدلی جهت ارزیابی عملکرد زنجیره تامین با استفاده از مدل تحلیل پوششی داده­های شبکه­ای)مورد: زنجیره تامین شرکتهای داروسازی بورس اوراق بهادار تهران("،فصلنامه علمی  پژوهشی مطالعات مدیریت صنعتی سال دهم، شماره 26، صفحات 9-26، پاییز 1391.
[26] Shafiee, M., Hosseinzade Lotfi, F. and Saleh, H, “Supply Chain Performance Evaluation with Data Envelopmnet Analysis and Balanced Scorecard Approach”, Appl. Math. Modelling, 38, (2014), 5092–5112.
[27] Kwon, H.B., Marvel, J.H. and Roh, J.J, “Three-stage per-formance modeling using DEA-BPNN for better practice benchmarking”, Expert Systems With Applica-tions,(2016), doi: 10.1016/j.eswa.2016.11.009.
[28] Vyas, G.S., and Jha, K.N., “Benchmarking Green Building Attributes to Achieve Cost Effectiveness Using a Data Envelopment Analysis”, Sustainable Cities and Society,http://dx.doi.org/10.1016/j.scs.2016.08.028.
[29] M. Zerafat Angiz L, A. Emrouznejad, A. Mustafa, “Fuzzy assessment of performance of a decision making units using DEA: A non-radial approach”, Expert Systems with Applications 37 (2010) 5153–5157
[30] Shivi Agarwal, “Efficiency Measure by Fuzzy Data envelopment Analysis Model”, Fuzzy Inf. Eng. 6 (2014), 59-70.
[31] Rashed Khanjani Shiraz, Vincent Charles, Leila Jalalzadeh, “Fuzzy rough DEA model: A possibility and expected value approaches”, Expert Systems with Applications 41 (2014) 434–444.
 [32] Lee, Tzong-Ru (Jiun-Shen), Shiu, Yi-siang, P.Sivakumar.b, “The Application of SCOR in Manufacturing: Two Cases in Taiwan”, Procedia Engineering, 38, (2012), 2548-2563