نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری مدیریت تولید و عملیات، گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه شهید بهشتی

2 استاد دانشگاه، گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه شهید بهشتی.

3 دانشیار دانشگاه، گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه شهید بهشتی

چکیده

در طی دهه گذشته، به دلیل قوانین زیست محیطی و فضای رقابتی تدوین یک برنامه تاکتیکی موثر که از یک طرف قادر به برنامه‌ریزی کارا و یکپارچه تامین کالا برای مشتریان باشد و از طرف دیگر مسئولیت سازمان‌ها برای جمع‌آوری کالای معیوب را در نظر بگیرد، امری اجتناب ناپذیر به نظر می‌رسد. در این مقاله یک برنامه‌ریزی خطی عدد صحیح آمیخته در نظر گرفته شده است که در جهت رو به جلو مواد اولیه را از تامین‌کنندگان به کارخانه‌ها و در ادامه از طریق مراکز توزیع، محصول نهایی را به مشتریان تحویل می‌دهد. از طرفی به طور همزمان کالای بازیافتی از مشتریان را جمع‌آوری کرده وارد چرخه بازسازی و یا انهدام ایمن می‌کند. از آنجایی که مساله مورد برسی از دسته مسائل NP-hardاست، برای حل آن از الگوریتم فراابتکاری شبیه سازی تبرید مبتنی بر ابر برای اولین بار در پیشینه این حوزه استفاده شده است. همچنین برای نمایش جواب از روش درخت پوشا که نسبت به روش‌های دیگر در ادبیات موضوع از آرایه‌های کمتری استفاده می‌کند بهره جسته‌ایم. برای تحلیل دقت و سرعت الگوریتم مورد بررسی، عملکرد آن را با الگوریتم ژنتیک و الگوریتم شبیه‌سازی تبرید (که در ادبیات موضوع به کار گرفته شده بودند) مقایسه کرده‌ایم. نتایج نشان می دهند تابع هزینه در الگوریتم شبیه‌سازی تبرید مبتنی بر ابر نسبت به هر دو الگوریتم مورد بررسی در ادبیات پاسخ‌های دقیق‌تری را ارائه می‌دهد. همچنین از نظر معیار سرعت همگرایی، روش پیشنهادی نسبت به الگوریتم ژنتیک در وضعیت بهتری است اما نسبت به الگوریتم شبیه‌سازی تبرید تفاوت معنا داری ندارد.

کلیدواژه‌ها

عنوان مقاله [English]

Cloud Theory Based Simulated Annealing alghorithm for a Closed-Loop Supply Chain Network Design: Spanning Tree Solution Representation

نویسندگان [English]

  • Ehsan Yadegari 1
  • Akbar Alem Tabriz 2
  • Mostafa Zandieh 3

1 *Ph.D. in Production & Operations Management, Department of Industrial Management, Faculty of Management and Accounting, Shahid Beheshti University, Tehran, Iran

2 Professor, Department of Industrial Management, Faculty of Management and Accounting, Shahid Beheshti University, Tehran, Iran,

3 Associate Professor, Department of Industrial Management, Faculty of Management and Accounting, Shahid Beheshti University, Tehran, Iran.

چکیده [English]

Over the past decade, due to environmental laws and the competitive environment, development of an effective tactical plan for efficient and integrated supply chain and considering the responsibility of organizations to collect defective goods seems impossible. In this paper a mixed-integer linear programming is considered to mathematically model the essentially five stages along our supply chain network: suppliers, manufacturers, DCs, customers, and Dismantlers.Delivers raw materials from suppliers to factories and then through distribution centers, delivering the final product to customers. On the other hand, it simultaneously collects recycled goods from customers and enters the cycle of safe reconstruction or destruction.
The aim of this model is minimizing the costs of establishing facilities at potential points as well as the optimal flow of materials in the network layers. Since the problem is NP-hard, to solve it, the cloud theory based simulated annealing algorithm has been used. We also used the tree-covering method to show the answer, which uses fewer arrays than other methods in the literature. To analyze the accuracy and speed of the proposed algorithm, we compared its performance with the genetic and simulated annealing algorithm. The results show that the cost function in the cloud-based refrigeration simulation algorithm provides more accurate answers than both algorithms studied in the literature. The results show that the cost function in the cloud-based simulated annealing algorithm provides more accurate answers than both algorithms studied in the literature. Also, in terms of convergence rate criterion, the proposed method has better position than the genetic algorithm, but it is not significantly different from simulated annealing algorithm.

کلیدواژه‌ها [English]

  • "Supply Chain Network Design"
  • "Cloud Theory Based Simulated Annealing"
  • "Mixed Integer Linear Programming"
  • "Spanning Tree"
1.         Fleischmann, M., et al., The impact of product recovery on logistics network design. Production and operations management, 2001. 10(2): p. 156-173.
2.         Pishvaee, M.S. and J. Razmi, Environmental supply chain network design using multi-objective fuzzy mathematical programming. Applied Mathematical Modelling, 2012. 36(8): p. 3433-3446.
3.         Govindan, K., M. Fattahi, and E. Keyvanshokooh, Supply chain network design under uncertainty: A comprehensive review and future research directions. European Journal of Operational Research, 2017.
4.         Ko, H.J. and G.W. Evans, A genetic algorithm-based heuristic for the dynamic integrated forward/reverse logistics network for 3PLs. Computers & Operations Research, 2007. 34(2): p. 346-366.
5.         Min, H. and H.-J. Ko, The dynamic design of a reverse logistics network from the perspective of third-party logistics service providers. International Journal of Production Economics, 2008. 113(1): p. 176-192.
6.         Lee, D.-H. and M. Dong, A heuristic approach to logistics network design for end-of-lease computer products recovery. Transportation Research Part E: Logistics and Transportation Review, 2008. 44(3): p. 455-474.
7.         Wang, H.-F. and H.-W. Hsu, A closed-loop logistic model with a spanning-tree based genetic algorithm. Computers & operations research, 2010. 37(2): p. 376-389.
8.         Govindan, K., H. Soleimani, and D. Kannan, Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future. European Journal of Operational Research, 2015. 240(3): p. 603-626.
9.         Syarif, A., Y. Yun, and M. Gen, Study on multi-stage logistic chain network: a spanning tree-based genetic algorithm approach. Computers & Industrial Engineering, 2002. 43(1): p. 299-314.
10.       Jayaraman, V. and H. Pirkul, Planning and coordination of production and distribution facilities for multiple commodities. European journal of operational research, 2001. 133(2): p. 394-408.
11.       Jayaraman, V., R. Gupta, and H. Pirkul, Selecting hierarchical facilities in a service-operations environment. European Journal of Operational Research, 2003. 147(3): p. 613-628.
12.       Li, J., J. Chen, and S. Wang, Introduction, in Risk Management of Supply and Cash Flows in Supply Chains. 2011, Springer. p. 1-48.
13.       Tsiakis, P. and L.G. Papageorgiou, Optimal production allocation and distribution supply chain networks. International Journal of Production Economics, 2008. 111(2): p. 468-483.
14.       Syarif, I., A. Prugel-Bennett, and G. Wills. Unsupervised clustering approach for network anomaly detection. in International Conference on Networked Digital Technologies. 2012. Springer.
15.       Elhedhli, S. and R. Merrick, Green supply chain network design to reduce carbon emissions. Transportation Research Part D: Transport and Environment, 2012. 17(5): p. 370-379.
16.       Krikke, H., A. van Harten, and P. Schuur, Business case Oce: reverse logistic network re-design for copiers. OR-Spektrum, 1999. 21(3): p. 381-409.
17.       Aras, G. and D. Crowther, Governance and sustainability: An investigation into the relationship between corporate governance and corporate sustainability. Management Decision, 2008. 46(3): p. 433-448.
18.       Gírio, F.M., et al., Hemicelluloses for fuel ethanol: a review. Bioresource technology, 2010. 101(13): p. 4775-4800.
19.       Govindan, K., R. Khodaverdi, and A. Jafarian, A fuzzy multi criteria approach for measuring sustainability performance of a supplier based on triple bottom line approach. Journal of Cleaner Production, 2013. 47: p. 345-354.
20.       Lu, Z. and N. Bostel, A facility location model for logistics systems including reverse flows: The case of remanufacturing activities. Computers & Operations Research, 2007. 34(2): p. 299-323.
21.       Salema, M.I.G., A.P.B. Póvoa, and A.Q. Novais, A strategic and tactical model for closed-loop supply chains. OR spectrum, 2009. 31(3): p. 573-599.
22.       Devika, K., A. Jafarian, and V. Nourbakhsh, Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques. European Journal of Operational Research, 2014. 235(3): p. 594-615.
23.       Yadegari, E., et al., An Artificial Immune Algorithm for a Closed-Loop Supply Chain Network Design Problem with Different Delivery Paths. International Journal of Strategic Decision Sciences (IJSDS), 2014. 5(3): p. 27-46.
24.       Yadegari, E., et al., A Flexible Integrated Forward/Reverse Logistics Model with Random Path-based Memetic Algorithm. Iranian Journal of Management Studies, 2015. 8(2): p. 287.
25.       Yadegari, E., M. Zandieh, and H. Najmi, A hybrid spanning tree-based genetic/simulated annealing algorithm for a closed-loop logistics network design problem. International Journal of Applied Decision Sciences, 2015. 8(4): p. 400-426.
26.       Ghayebloo, S., et al., Developing a bi-objective model of the closed-loop supply chain network with green supplier selection and disassembly of products: the impact of parts reliability and product greenness on the recovery network. Journal of Manufacturing Systems, 2015. 36: p. 76-86.
27.       Kaya, O. and B. Urek, A mixed integer nonlinear programming model and heuristic solutions for location, inventory and pricing decisions in a closed loop supply chain. Computers & Operations Research, 2016. 65: p. 93-103.
28.       Yi, P., et al., A retailer oriented closed-loop supply chain network design for end of life construction machinery remanufacturing. Journal of Cleaner Production, 2016. 124: p. 191-203.
29.       Gen, M. and R. Cheng, Genetic algorithms and engineering optimization. Vol. 7. 2000: John Wiley & Sons.
30.       Gottlieb, J. and L. Paulmann. Genetic algorithms for the fixed charge transportation problem. in Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on. 1998. IEEE.
31.       LV, P., L. Yuan, and J. Zhang, Cloud theory-based simulated annealing algorithm and application. Engineering Applications of Artificial Intelligence, 2009. 22: p. 742–749.
32.       Deyi, L., M. Haijun, and S. Xuemei, Membership clouds and membership cloud generators [J]. Journal of Computer Research and Development, 1995. 6.