نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مهندسی صنایع، دانشکده مهندسی، دانشگاه بوعلی سینا، همدان، ایران

2 دانشیار گروه مهندسی صنایع، دانشکده مهندسی ، دانشگاه بوعلی سینا ، همدان، ایران

چکیده

مساله زمان‌بندی کارکنان به دنبال یافتن یک برنامه کاری بهینه برای برنامه‌ریزی کارکنان با توجه به میزان تقاضا (حجم کار)، میزان در دسترس بودن کارکنان، قانون کار، قراردادهای کاری و... می‌باشند. اهمیت این مساله در بهبود کیفیت خدمت‌دهی، سلامت و رضایت کارکنان و کاهش هزینه‌‌ها از جمله در بیمارستان‌ها، مراکز نظامی، خدماتی یا امدادی، پژوهشگران را ترغیب به بررسی هر چه بیشتر آن نموده است. در این بین مساله‌ی زمان‌بندی شیفت‌های کاری پرستاران، به دنبال یافتن یک برنامه‌ی زمان‌بندی است که مشخص‌کننده‌ی تعداد پرستار مورد نیاز با مهارت‌های مختلف و زمان ارایه خدمت آن‌ها در افق برنامه‌ریزی است. در این تحقیق با افزودن محدودیت‌های ترجیحات شیفتی پرستاران و محدودیت تعداد روز کاری متوالی سعی شده مساله نسبت به تحقیقات گذشته شرایط واقعی‌تر به خود گیرد. تابع هدف مساله مورد بررسی شامل حداقل‌سازی مجموع هزینه‌های تخصیص شیفت‌های کاری به پرستاران، هزینه‌ی تعداد پرستاران ذخیره لازم، هزینه‌ی اضافه‌کاری از یک نوع شیفت خاص، هزینه‌ی کم‌کاری از یک نوع شیفت خاص، هزینه‌ی اضافه‌کاری در افق برنامه‌ریزی، هزینه‌ی کم‌کاری در افق برنامه‌ریزی و هزینه‌ی عدم اعمال شیفت-روزهای کاری و غیرکاری ترجیحی پرستاران است. برای حل مساله، پس از مدلسازی مساله در قالب برنامه عددی صحیح مختلط و به دلیل پچیدگی ذاتی مساله از الگوریتم تفاضل تکاملی با ابتکار در عملگر تقاطع استفاده شده است. به منظور اعتبارسنجی کیفیت الگوریتم پیشنهادی، خروجی آن با خروجی الگوریتم ژنتیک مقایسه گردید. نتایج نشان می‌دهد که الگوریتم تفاضل تکاملی دارای کارایی مناسبی در حل مساله است.

کلیدواژه‌ها

عنوان مقاله [English]

Nurse Rostering Problem Considering Drect andIndirect Costs: Deferential Evolution Algorithm

نویسندگان [English]

  • Mohammad Reza Hassani 1
  • Javad Behnamian 2

1 MS.c. in Industrial Engineering, Industrial Engineering Department, Bu-Ali Sina University, Hamadan, Iran

2 Associate Professor; Industrial Engineering, Department Bu-Ali Sina University, Hamadan

چکیده [English]

The employee scheduling seeks to find an optimal schedule for employees according to the amount of demand (workload), employee availability, labor law, employment contracts, etc. The importance of this problem in improving the quality of service, health and satisfaction of employees and reducing costs, including in hospitals, military or service centers, has encouraged researchers to study. In this regard, nurse rostering problem is a scheduling that determines the number of nurses required with different skills and the time of their services on the planning horizon. In this research, by adding the nurses' shift preferences and number of consecutive working days constraints, an attempt has been made to make the problem more realistic. The objective function of the problem is to minimize the total cost of allocating work shifts to nurses, the cost of the number of nurses required to reserve, the cost of overtime from a particular shift, the cost of underemployment from a particular shift, the cost of overtime on the planning horizon, the cost of underemployment on the planning horizon and the cost of absence shift-working and non-working days preferred by nurses. To solve problem, after modeling the problem as a mixed-nteger program and due to the complexity of the problem, the differential evolutionary algorithm is used with innovation in its crossover operator. To validate the proposed algorithm, its output was compared with the genetic algorithm. The results show that the differential evolutionary algorithm has good performance in problem-solving.

Keywords: Nurse Rostering Problem, Deferential Evolution Algorithm

کلیدواژه‌ها [English]

  • Nurse Rostering Problem
  • Healthcare
  • Deferential Evolution Algorithm

Awadallah, M. A., Bolaji, A. L. a., & Al-Betar, M. A. (2015). A hybrid artificial bee colony for a nurse rostering problem. Applied Soft Computing, 35, 726-739. 
Baeklund, J., & Klose, A. (2013). Exact and heuristic approaches to nurse scheduling. Aarhus University, Department of Mathematics,
Bagheri, M., Devin, A. G., & Izanloo, A. (2015). A two-stage stochastic programming for nurse scheduling in Razavi Hospital. Razavi International Journal of Medicine, 3(1).
Brest, J., Greiner, S., Boskovic, B., Mernik, M., & Zumer, V. (2006). Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE transactions on evolutionary computation, 10(6), 646-657. 
Eskandari, A., & Ziarati, K. (2008). Nurse rostering using fuzzy logic: a case study. 
Fatemi Ghomi, S., Arabzadeh, E., Karimi, B. (2018). A Multi Period Routing and Scheduling optimization Model for Home health Care Problem. Industrial Management Studies, 16(48), 1-30 [in Persian].
Foley, M. E. (2002). The nursing shortage and the quality of care. The New England journal of medicine, 347(14), 1118. 
Fulcher, J. (2008). Computational intelligence: an introduction. In Computational intelligence: a compendium (pp. 3-78): Springer.
Glass, C. A., & Knight, R. A. (2010). The nurse rostering problem: A critical appraisal of the problem structure. European Journal of Operational Research, 202(2), 379-389. 
Hall, R. W. (2012). Handbook of healthcare system scheduling: Springer.
Huang, H., Lin, W., Lin, Z., Hao, Z., & Lim, A. (2014). An evolutionary algorithm based on constraint set partitioning for nurse rostering problems. Neural Computing and Applications, 25(3-4), 703-715. 
Huarng, F. (1997). Integer goal programming model for nursing scheduling: a case study. In Multiple Criteria Decision Making (pp. 634-643): Springer.
Ingels, J., & Maenhout, B. (2015). The impact of reserve duties on the robustness of a personnel shift roster: An empirical investigation. Computers & Operations Research, 61, 153-169. 
Lagatie, R., Haspeslagh, S., & De Causmaecker, P. (2009). Negotiation Protocols for Distributed Nurse Rostering. Paper presented at the Proceedings of the 21st Benelux Conference on Artificial Intelligence.
Maass, K. L., Liu, B., Daskin, M. S., Duck, M., Wang, Z., Mwenesi, R., & Schapiro, H. (2017). Incorporating nurse absenteeism into staffing with demand uncertainty. Health care management science, 20(1), 141-155. 
Parr, D., & Thompson, J. M. (2007). Solving the multi-objective nurse scheduling problem with a weighted cost function. Annals of Operations Research, 155(1), 279-288. 
Pham, V. N., Le Thi, H. A., & Dinh, T. P. (2012). Solving nurse rostering problems by a multiobjective programming approach. Paper presented at the International Conference on Computational Collective Intelligence.
Price, K., Storn, R. M., & Lampinen, J. A. (2006). Differential evolution: a practical approach to global optimization: Springer Science & Business Media.
Rashidi Komijan, A., Gordani, A. (2019). An integrated mathematical model for aircraft routing and crew scheduling for airlines with multi fleet and multi maintenance hub. Industrial Management Studies, 17(55), 101-135 [in Persian].
Richardson, J. T., Palmer, M. R., Liepins, G. E., & Hilliard, M. R. (1989). Some guidelines for genetic algorithms with penalty functions. Paper presented at the Proceedings of the 3rd international conference on genetic algorithms.
Roy, S., Davim, J. P., & Kumar, K. (2017). Optimization of process parameters using Taguchi coupled genetic algorithm: machining in CNC lathe. In Mathematical Concepts and Applications in Mechanical Engineering and Mechatronics (pp. 67-93): IGI Global.
Santos, H. G., Toffolo, T. A., Gomes, R. A., & Ribas, S. (2016). Integer programming techniques for the nurse rostering problem. Annals of Operations Research, 239(1), 225-251. 
Sharma, P., Sharma, N., & Sharma, H. (2016). Binomial crossover embedded shuffled frog leaping algorithm. Paper presented at the Computing, Communication and Automation (ICCCA), 2016 International Conference on.
Smet, P. (2016). Nurse rostering: models and algorithms for theory, practice and integration with other problems. 4OR, 14, 327–328.
Solos, I. P., Tassopoulos, I. X., & Beligiannis, G. N. (2013). A generic two-phase stochastic variable neighborhood approach for effectively solving the nurse rostering problem. Algorithms, 6(2), 278-308. 
Storn, R., & Price, K. (2010). Differential evolution homepage. Available at: http://www. ICSI. Berkeley. edu/~ storn/code. html.