نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی پوشاک و مدیریت، دانشکده مهندسی نساجی، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 دانشجوی کارشناسی ارشد دانشکده مهندسی نساجی دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

در این پژوهش، مسئله برنامه‌ریزی خرید در صنعت پوشاک که با تامین کنندگانی در گستره بین المللی مواجه است بررسی می‌شود. توجه به چالش‌های ارزیابی تامین کنندگان و انتخاب آنها با وجود شاخص‌های کمی-کیفی و تعیین مقدار سفارش از هر واحد بافندگی پارچه برای صنعتگران این حوزه بسیار حیاتی است. لذا، در مقاله حاضر ابتدا با استفاده از یک رویکرد ترکیبی تصمیم‌گیری چند معیاره در حالت چند تصمیم‌گیرنده، یک مدل ارزیابی و انتخاب تامین‌کننده بین‌المللی در صنعت نساجی و پوشاک توسعه داده می‌شود و سپس با استفاده از یک مدل برنامه‌ریزی ریاضی، میزان سفارش به هر تامین‌کننده مدلسازی می‌شود. در مرحله اول از روش پژوهش، در ابتدا رویکرد فازی گروهی-فرآیند تحلیل سلسله مراتبی جهت بدست آوردن وزن کلی معیارها و زیرمعیارها استفاده شده است. به دلیل وجود هر دو نوع معیار کیفی و کمی، روش تلفیقی ویکور گسترش یافته فازی-تصادفی توسعه داده می‌شود که برای معیارهای کیفی از داده‌های فازی و برای معیارهای کمی از داده‌های تصادفی (بر اساس پیشینه‌ی تاریخی) استفاده می‌شود در مرحله دوم از روش پژوهش، برای تعیین میزان خرید مدل برنامه‌ریزی غیرخطی توسعه داده می‌شود. در انتها، با استفاده از یک مطالعه عددی، استقرار مدل فوق در صنعت پوشاک انجام می‌شود و با آنالیز حساسیت مورد تجزیه و تحلیل قرار می‌گیرد. نتایج این پژوهش بیانگر میزان اهمیت تقاضا و ظرفیتِ تخصیص داده شده توسط تامین کنندگان بر برنامه تدارکات است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Fabric procurement planning and evaluating in apparel global supply chain: An Integrated modified VIKOR with fuzzy-random data and nonlinear programming

نویسندگان [English]

  • R. Ghasemy Yaghin 1
  • Fateme Darvishi 2

1 Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran

2 Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran

چکیده [English]

This paper presents a global supplier selection model for the textile and clothing industry using a fuzzy multi-criteria group decision making approach. Then, the order quantity of each supplier is determined by a mathematical programming model. In the first step, a group fuzzy analysis hierarchical process approach is used to obtain the overall weight of the criteria and sub-criteria and then modified VIKOR is developed in order to calculate the vendor rating. In doing so, a modified VIKOR method with fuzzy-random data is extended due to the existence of both qualitative and quantitative criteria. The qualitative criteria are considered by fuzzy linguistic modeling and quantitative criteria from random data are formulated in a stochastic environment (based on historical data of suppliers). In the second step, a nonlinear programming model is developed to to determine the purchasing quantities from suppliers with multi-sourcing strategy. Finally, using a numerical study, the deployment of the above model is done in the clothing industry and crucial parameters are discovered by sensitivity analysis. Our findings indicate the critical role of customer’s demand and assigned capacity of suppliers in procurement plan.

کلیدواژه‌ها [English]

  • Global supplier selection
  • Apparel supply chain
  • Modified VIKOR with fuzzy-random data
  • Mathematical programming
  • Fabric procurement
درویشی، فاطمه.، قاسمی یقین، رضا.، (1397). خرید جهانی در زنجیره عرضه پوشاک: یک رویکرد یکپارچه تصمیم‌گیری چندمعیاره فازی-گروهی، مجله علوم و فناوری نساجی، 7(3)، 5-18.
References       
Awasthi, A., Govindan, K., Gold, S. (2017). “Multi-tier sustainable global supplier selection using a fuzzy AHP-VIKOR based approach”, International Journal of Production Economics, S0925-5273, 30328-6.
BonacichJ , E., Cheng, L., Chinchilla, N., Hamnton, N., Ong, P. (1994). “Global production; The apparel industry in the Pacific Rim” ,Temple University Press, Philadelphia 19122, United States of America.
Çebi, F., Otay, I. (2016). “A two-stage fuzzy approach for supplier evaluation and order allocation problem with quantity discounts and lead time”, Information Sciences 339, 143-157.
Chan, T. Kumar, N., Tiwari, M., Lau, H., Choy, K. (2008). “Global supplier selection: a fuzzy AHP approach”, International Journal of Production Research 46 (14), 3825-3857.
Darvishi, F., Ghasemy Yaghin, R. and Sadeghi, A. (2020), “Integrated fabric procurement and multi-site apparel production planning with cross-docking: a hybrid fuzzyrobust stochastic programming approach”, Applied Soft Computing, 92, 106267.
Fagan, M.L. (1991) “A Guide to Global Sourcing", Journal of Business Strategy 12 (2), 21-25.
Gargeya, J.S., Richter, S.J. (2005). “Global sourcing shifts in the U.S. textile and apparel industry: a cluster analysis “, The Journal of The Textile Institute 96 (4), 261-276.
Gold, S., Awasthi, A. (2015) “Sustainable global supplier selection extended towards sustainability risks from (1+n)th tier suppliers using fuzzy AHP based approach”, IFAC-PapersOnline 48 (3), 966-971.
Hamdan, S., Cheaitou, A. (2016). “Supplier selection and order allocation with green criteria: An MCDM and multi-objective optimization approach”, Computers and Operation Research S0305-0548, 30269-6.
Hammami, R., Temponi, C., Frein, Y. (2014). “A scenario-based stochastic model for supplier selection in global context with multiple buyers, currency fluctuation uncertainties, and price discounts”, European Journal of Operational Research 233 (1), 159-170.
Holweg, M., Reichhart, A., Hong, E. (2010). “On risk and cost in global sourcing”, International Journal Production Economics 131, 333–341.
Jin, B., Farr, A. (2010). “Supplier selection criteria and perceived benefits and challenges of global sourcing apparel firms in the United States” Family & Consumer Sciences Research Journal 39 (1), 31–44.
Kim, S. (2012). “Global sourcing of South Korean apparel industry: sourcing trend and supplier selection”, The Journal of The Textile Institute 103, 1335-1351.
Koprulu, A., Albayrakoglu, M.M. (2017). “Supply chain management in the textile industry: a supplier selection model with the analytical hierarchy process”, ISAHP, Viña Del Mar, Chile.
Kumar, M., Vratb, P., Shankarc, R. (2004) “A fuzzy goal programming approach for vendor selection problem in a supply chain”, Computers & Industrial Engineering 46 (2004), 69–85.
Kumar, P., Shankar, R., Yadav, S.S. (2011). “Global supplier selection and order allocation using FQFD and MOLP”, International Journal of Logistics Systems and Management 9 (1), 43-68.
Majumdar, A., Sinha, s. k., Shaw m. and Mathiyazhagan k. (2020), “Analysing the vulnerability of green clothing supply chains in South and Southeast Asia using fuzzy analytic hierarchy process”, International Journal of Production Research, DOI: 10.1080/00207543.2019.1708988.
Mandal, S., Maity, A., Maity, K., Mondal, S., Maiti, M. (2011). “Multi-item multi-period optimal production problem with variable preparation time in fuzzy stochastic environment”, Applied Mathematical Modelling 35, 4341-4353.
Matthyssens, P. (2006). “The global purchasing challenge: A look back and a look ahead”, Journal of Purchasing & Supply Management 12, 167–169.
Nong, N.T., Ho, P.T., (2019). “Criteria for Supplier Selection in Textile and Apparel Industry: A Case Study in Vietnam”, Journal of Asian Finance, Economics and Business 6 (2), 213-221.
Opricovic, S., and Tzeng, G. H. (2007), “Extended VIKOR method in comparison with outranking methods”, European Journal of Operational Research, 178(2), 514-529.‏
Quintens, L., Pauwelsa, P. (2006) “Global purchasing: State of the art and research directions”, Journal of Purchasing & Supply Management 12 (4), 170-181.
Tavana, M., Kiani, R., JSantos-Arteaga, F., Doust, E.R. (2016) “An extended VIKOR method using stochastic data and subjective judgments”, Computers and Industrial Engineering 97, 240-247.
 Teng, S., Jaramillo, H. (2005). “A model for evaluation and selection of suppliers in global textile and apparel supply chains”, International Journal of  Physical Distribution & Logistics Management 35 (7), 503-523.
Warasthe, r., Brandenburg, m., (2018), “Sourcing Organic Cotton from African Countries Potentials and Risks for the Apparel Industry Supply Chain”, IFAC-PapersOnLine, 51(30), 297-301.
Wu, Z., Xia, W. (2007). “Supplier selection with multiplecriteria involume discount environments”, International Journal of Management Sience, Omega 35, 494-504.
Yalcin, N., Bayrakdaroglu, A., Kahraman, C., (2012),”Application of fuzzy multi-criteria decision making methods for financial performance evaluation of Turkish manufacturing industries”, Expert Systems with Applications 39, 350–364.
Zho, T., Li, L., Liao H., Zhang X., Shen, W. (2019), “A hybrid multi-criteria decision making model for elective admission control in a Chinese public hospital”, Knowledge-Based Systems 173 (2019) 37–51.
Zimmer, K., Fröhling, M., Breun, P., Schultmann, F. (2017). “Assessing social risks of global supply chains: a quantitative analytical approach and its application to supplier selection in the German automotive industry”, Journal of Cleaner Production, S0959-6526, 30245-7
Zyoud, S.H., Kaufmann, L.G., Shaheen, H., Samhan, S., Fuchs-Hanusch, D. (2016). “A framework for water loss management in developing countries under fuzzy environment: Integration of Fuzzy AHP with Fuzzy TOPSIS”, Expert Systems With Applications 61, 86-105.
 
[In Persian{
 
Darvishi, F., Ghasemy Yaghin, R., (2018), “Global purchasing in clothing supply chain: An integrated fuzzy-group multi-attribute decision making approach “ Journal of Textile Science and Technology, 7 (3), 5- 18.].