نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی صنایع، فنی و مهندسی، دانشگاه زنجان، زنجان، ایران

2 کارشناسی ارشد مدیریت صنعتی، گروه مدیریت صنعتی، دانشکده علوم اجتماعی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین، ایران

3 کارشناسی ارشد برق مخابرات، گروه مهندسی برق، دانشکده برق و کامپیوتر، دانشگاه بیرجند، بیرجند، ایران

چکیده

یکی از مهمترین موضوعاتی که مدیران به منظور افزایش عملکرد سیستم ها با آن روبرو هستند مسئله تخصیص افزونگی قابلیت اطمینان (RRA) است. در بسیاری از مدل های RRA معمولا قابلیت اطمینان اجزاء عددی در بازه (0،1) در نظر گرفته می شود، این در حالی است که پارامترهای مختلفی می تواند بر قابلیت اطمینان اثر گذاشته و آن را در طول زمان تغییر دهید. بنابراین بهتر است قابلیت اطمینان یک سیستم به صورت غیر قطعی در نظر گرفته شود. در این مقاله با در نظر گرفتن قابلیت اطمینان اجزاء یک سیستم به عنوان متغیرهای تصادفی، یک سیستم پشتیبان تصمیم گیری بهینه گرا پیشنهاد شده است که برای استنتاج مقادیر بهینه یا نزدیک به بهینه ی متغیرهای تصمیم و تابع هدف از قواعد اگر- آنگاه تصادفی استفاده می نماید. به منظور بررسی کارایی سیستم پیشنهاد شده مثال های متعدد ی ارائه شده است که مقایسه نتایج استنتاج شده با مقادیر بهینه نشان از عملکرد بسیار مناسب سیستم پشتیبان تصمیم توسعه داده شده دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Stochastic rule-based decision support system for reliability redundancy allocation problem

نویسندگان [English]

  • Amir Yousefli 1
  • reza Norouzi 2
  • Amir Hosein Hamzeiyan 3

1 Assistant Professor, Department of Industrial, Technical and Engineering Engineering, Zanjan University, Zanjan, Iran

2 Master of Industrial Management, Department of Industrial Management, Faculty of Social Sciences, Imam Khomeini International University (RA), Qazvin, Iran

3 Master's Degree in Telecommunication Electrical Engineering, Department of Electrical Engineering, Faculty of Electrical and Computer Engineering, Birjand University, Birjand, Iran

چکیده [English]

Reliability Redundancy Allocation (RRA) is one of the most important problems facing the managers to improve the systems performance. In the most RRA models, presented in the literature components’ reliability used to be assumed as an exact value in (0,1) interval, while various factors might affect components’ reliability and change it over time. Therefore, components reliability values should be considered as uncertain parameters. In this paper, by developing a discrete - continuous inference system, an optimization - oriented decision support system is proposed considering the components’ reliability as stochastic variables. Proposed DSS uses stochastic if - then rules to infer optimum or near optimum values for the decision variables as well as the objective function. Finally, In order to evaluate the efficiency of the proposed system, several examples are provided. Comparison of the inferred results with the optimal values shows the very good performance of the developed stochastic decision support system.

کلیدواژه‌ها [English]

  • reliability redundancy allocation problem
  • stochastic decision support system
  • stochastic rule base
 Ardakan, M. A., & Hamadani, A. Z. (2014). Reliability–redundancy allocation problem with cold-standby redundancy strategy. Simulation Modelling Practice and Theory, 42, 107-118. https://doi.org/10.1016/j.simpat.2013.12.013.
Ardakan, M. A., & Rezvan, M. T. (2018). Multi-objective optimization of reliability–redundancy allocation problem with cold-standby strategy using NSGA-II. Reliability Engineering & System Safety, 172, 225-238.
Ardakan, M. A., Hamadani, A. Z., & Alinaghian, M. (2015). Optimizing bi-objective redundancy allocation problem with a mixed redundancy strategy. ISA transactions, 55, 116-128. https://doi.org/10.1016/j.isatra.2014.10.002.
Ashraf, Z., Hasan, M. G., & Khan, M. S. (2021). Solving Interval Type-2 Fuzzy Reliability-Redundancy Allocation Systems With Efficient PSO Algorithm. In Advancements in Fuzzy Reliability Theory (pp. 135-165). IGI Global.
Cao, R., Coit, D. W., Hou, W., & Yang, Y. (2020). Game theory based solution selection for multi-objective redundancy allocation in interval-valued problem parameters. Reliability Engineering & System Safety, 199, 106932.
Chambari, A., Azimi, P., & Najafi, A. A. (2021). A bi-objective simulation-based optimization algorithm for redundancy allocation problem in series-parallel systems. Expert Systems with Applications, 173, 114745.
Charles, V., & Udhayakumar, A. (2012). Genetic algorithm for chance constrained reliability stochastic optimisation problems. International Journal of Operational Research, 14(4), 417-432. https://doi.org/10.1504/IJOR.2012.047513
Coit, D. W., Jin, T., & Wattanapongsakorn, N. (2004). System optimization with component reliability estimation uncertainty: a multi-criteria approach. IEEE transactions on reliability, 53(3), 369-380. https://doi.org/10.1109/TR.2004.833312
Ebrahimipour, V., & Sheikhalishahi, M. (2011, April). Application of multi-objective particle swarm optimization to solve a fuzzy multi-objective reliability redundancy allocation problem. In Systems Conference (SysCon), 2011 IEEE International (pp. 326-333). IEEE. https://doi.org/10.1109/SYSCON.2011.5929085
El-DamceseP, M., AbbasP, F., & El-GhamryP, E. (2014). Reliability and cost analysis of a series system model using fuzzy parametric geometric programming.
Essadqi, M., Idrissi, A., & Amarir, A. (2018). An Effective Oriented Genetic Algorithm for solving redundancy allocation problem in multi-state power systems. Procedia Computer Science, 127, 170-179.https://doi.org/10.1016/j.procs.2018.01.112.
Guilani, P. P., Ardakan, M. A., Guilani, P. P., & Lehdarboni, S. A. (2021). An exact Markov chain model for reliability–redundancy allocation problem with a choice of redundancy strategy. Life Cycle Reliability and Safety Engineering, 1-13.
Gupta, R. K., Bhunia, A. K., & Roy, D. (2009). A GA based penalty function technique for solving constrained redundancy allocation problem of series system with interval valued reliability of components. Journal of Computational and Applied Mathematics, 232(2), 275-284. https://doi.org/10.1016/j.cam.2009.06.008.
Jameel, A. F., & Radhi, A. Z. (2014). Solution of fuzzy redundancy reliability optimization problem by modified penalty function method. International Journal of Modern Mathematical Sciences, 10(1), 60-74.
Kulturel-Konak, S., Smith, A. E., & Coit, D. W. (2003). Efficiently solving the redundancy allocation problem using tabu search. IIE transactions, 35(6), 515-526. https://doi.org/10.1080/07408170304422
Kundu, T., & Islam, S. (2018). A new interactive approach to solve entropy based fuzzy reliability optimization model. International Journal on Interactive Design and Manufacturing (IJIDeM), 1-10. https://doi.org/10.1007/s12008-018-0484-6
Kuo, W., & Prasad, V. R. (2000). An annotated overview of system-reliability optimization. IEEE Transactions on reliability, 49(2), 176-187. https://doi.org/10.1109/24.877336
Liang, Y. C., & Smith, A. E. (2004). An ant colony optimization algorithm for the redundancy allocation problem (RAP). IEEE Transactions on reliability, 53(3), 417-423. https://doi.org/10.1109/TR.2004.832816.
Liu, B., & Liu, B. (2009). Theory and practice of uncertain programming (Vol. 239). Berlin: Springer.
Mahapatra, G. S., & Roy, T. K. (2014). Reliability optimisation of complex system using intuitionistic fuzzy optimisation technique. International journal of industrial and systems engineering, 16(3), 279-295. https://doi.org/10.1504/IJISE.2014.060130.
Marseguerra, M., Zio, E., Podofillini, L., & Coit, D. W. (2005). Optimal design of reliable network systems in presence of uncertainty. IEEE Transactions on Reliability, 54(2), 243-253. https://doi.org/10.1109/TR.2005.847279.
Mellal, M. A., & Salhi, A. (2021). System reliability-redundancy allocation by the multiobjective plant propagation algorithm. International Journal of Quality & Reliability Management.
Mellal, M. A., & Zio, E. (2020). System reliability-redundancy optimization with cold-standby strategy by an enhanced nest cuckoo optimization algorithm. Reliability Engineering & System Safety, 201, 106973.
Miller, I., Miller, M. (2015), John E. Freund's mathematical statistics with applications. Pearson, pp. 207.
Najmi, A., Abouei Ardakan, M., & Javid, Y. (2021). Optimization of reliability redundancy allocation problem with component mixing and strategy selection for subsystems. Journal of Statistical Computation and Simulation, 1-25.
Pourkarim Guilani, P., Azimi, P., Sharifi, M., & Amiri, M. (2019). Redundancy allocation problem with a mixed strategy for a system with k-out-of-n subsystems and time-dependent failure rates based on Weibull distribution: An optimization via simulation approach. Scientia Iranica, 26(2), 1023-1038.
Reddy, Y. S. K., & Reddy, C. N. M. (2011). Stochastic redundancy allocation problem using simulation. Journal of Engineering and Technology Research, 3(10), 287-291.
Sahoo, L. (2021). Reliability redundancy allocation problems under fuzziness using genetic algorithm and dual-connection numbers. In Nature-Inspired Computing Paradigms in Systems (pp. 111-123). Academic Press.
Sahoo, L., Bhunia, A. K., & Kapur, P. K. (2012). Genetic algorithm based multi-objective reliability optimization in interval environment. Computers & Industrial Engineering, 62(1), 152-160. https://doi.org/10.1016/j.cie.2011.09.003.
Tavana, M., Khalili-Damghani, K., Di Caprio, D., & Oveisi, Z. (2018). An evolutionary computation approach to solving repairable multi-state multi-objective redundancy allocation problems. Neural Computing and Applications, 30(1), 127-139. https://doi.org/10.1007/s00521-016-2676-y
Tekiner, H., & Coit, D. W. (2011). System reliability optimization considering uncertainty: minimization of a coefficient of variance measure.
Yadavalli, V. S. S., Malada, A., & Charles, V. (2007). Reliability stochastic optimization for an n-stage series system with m chance constraints. South African Journal of Science, 103(11-12), 502-504.
Zhang, E., & Chen, Q. (2016). Multi-objective reliability redundancy allocation in an interval environment using particle swarm optimization. Reliability Engineering & System Safety, 145, 83-92. https://doi.org/10.1016/j.ress.2015.09.008.